Санитарные правила устройства и эксплуатации радиационных контуров при ядерных реакторах. Open Library - открытая библиотека учебной информации

Расчет защиты от альфа и бета-излучения

Метод защиты временем.

Метод защиты расстоянием;

Метод защиты барьером (материалом);

Доза внешнего облучения от источников гамма-излучения пропорциональна времени облучения. Вместе с тем, для тех источников, которые по своим размерам можно считать точечными, доза обратно пропорциональна квадрату расстояния от него. Следовательно, уменьшение дозы облучения персонала от этих источников может быть достигнуто не только использованием метода защиты барьером (материалом), но и ограничением времени работы (защита временем) или увеличением расстояния от источника излучения до работающего (защита расстоянием). Эти три метода используются при организации радиационной защиты на АЭС.

Для расчета защиты от альфа и бета-излучения обычно достаточно определить максимальную длину пробега, которая зависит от их начальной энергии, а также от атомного номера, атомной массы и плотности поглощающего вещества.

Защита от альфа-излучения на АЭС (к примеру, при приемке «свежего» топлива) из-за малых длин пробегов в веществе не представляет сложностей. Главную опасность альфа-активные нуклиды представляют только при внутреннем облучении организма.

Максимальную длину пробега бета-частиц можно определить по следующим приближенным формулам, см:

для воздуха- R β =450 E β , где E β -граничная энергия бета-частиц, МэВ;

для легких материалов (алюминий) - R β = 0,1E β (при Е β < 0,5 МэВ)

R β =0,2E β (при Е β > 0,5 МэВ)

В практике работы на АЭС встречаются источники гамма-излучения различной конфигурации и размеров. Мощность дозы от них может быть измерена соответствующими приборами или рассчитана математически. В общем случае мощность дозы от источника определяется полной или удельной активностью, испускаемым спектром и геометрическими условиями - размерами источника и расстоянием до него.

Простейшим типом гамма-излучателя является точечный источник. Он представляет собой такой гамма-излучатель, для которого без существенной потери точности расчета можно пренебречь его размерами и самопоглощением излучения в нем. Практически можно считать точечным источником любое оборудование, являющееся гамма-излучателœем на расстояниях, более чем в 10 раз превышающих его размеры.

Для расчета защиты от фотонного излучения удобно пользоваться универсальными таблицами расчета толщины защиты в зависимости от кратности ослабления излучения К и энергии гамма-квантов. Такие таблицы приведены в справочниках по радиационной безопасности и вычислены на основании формулы ослабления в веществе широкого пучка фотонов от точечного источника с учетом фактора накопления.

Метод защиты барьером (геометрия узкого и широкого пучка) . В дозиметрии существуют понятия "широкие" и "узкие" (коллимированные) пучки фотонного излучения. Коллиматор подобно диафрагме ограничивает попадание рассеянного излучения в детектор (рис. 6.1). Узкий пучок используют, к примеру, в некоторых установках для градуировки дозиметрических приборов.

Рис. 6.1. Схема узкого пучка фотонов

1 - контейнер; 2 - источник излучения; 3 - диафрагма; 4 - узкий пучок фотонов

Рис. 6.2. Ослабление узкого пучка фотонов

Ослабление узкого пучка фотонного излучения в защите в результате взаимодействия его с веществом происходит по экспоненциальному закону:

I = I 0 e - m x (6.1)

где Iо - произвольная характеристика (плотность потока, доза, мощность дозы и др.) первоначального узкого пучка фотонов; I - произвольная характеристика узкого пучка после прохождения защиты толщиной х, см;

m - линœейный коэффициент ослабления, определяющий долю моноэнергетических (имеющих одинаковую энергию) фотонов, испытавших взаимодействие в веществе защиты на единицу пути, см -1 .

Выражение (7.1) справедливо также при использовании массового коэффициента ослабления m m вместо линœейного. При этом толщина защиты должна быть выражена в граммах на квадратный сантиметр (г/см 2), тогда произведение m m x будет оставаться безразмерным.

В большинстве случаев при расчетах ослабления фотонного излучения используют широкий пучок, т. е. пучок фотонов, где присутствует рассеянное излучение, которым пренебречь нельзя.

Различие между результатами измерений узкого и широкого пучков характеризуется фактором накопления В:

В = Iшир/Iузк, (6.2)

который зависит от геометрии источника, энергии первичного фотонного излучения, материала, с которым взаимодействует фотонное излучение, и его толщины, выраженной в безразмерных единицах mx.

Закон ослабления для широкого пучка фотонного излучения выражается формулой:

I шир = I 0 B e - m x = I 0 e - m шир х; (6.3),

где m, m шир - линœейный коэффициент ослабления для узкого и широкого пучков фотонов соответственно. Значения m и В для различных энергий и материалов приведены в справочниках по радиационной безопасности. В случае если в справочниках указан m для широкого пучка фотонов, то фактор накопления учитывать не следует.

Для защиты от фотонного излучения наиболее часто применяют следующие материалы: свинœец, сталь, бетон, свинцовое стекло, воду и т. п.

Метод защиты барьером (расчет защиты по слоям половинного ослабления). Кратность ослабления излучения К представляет собой отношение измеренной или рассчитанной мощности эффективной (эквивалентной) дозы Р изм без защиты, к допустимому уровню среднегодовой мощности эффективной (эквивалентной) дозы Р ср в той же точке за защитным экраном толщиной х:

Р ср = ПД А /1700 час = 20мЗв / 1700час = 12 мкЗв/час.;

где Р ср – допустимый уровень среднегодовой мощности эффективной (эквивалентной) дозы;

ПД А - предел эффективной (эквивалентной) дозы для персонала группы А.

1700 час – фонд рабочего времени персонала группы А за год.

K = Р изм / Р ср;

где Р изм - измеренная мощность эффективной (эквивалентной) дозы без защиты.

При определœении по универсальным таблицам крайне важной толщины защитного слоя данного материала х (см), следует знать энергию фотонов e (Мэв) и кратность ослабления излучения К.

При отсутствии универсальных таблиц оперативное определœение примерной толщины защиты можно выполнять, пользуясь приближенными значениями споя половинного ослабления фотонов в геометрии широкого пучка. Слой половинного ослабления Δ 1/2 представляет собой такую толщину защиты, которая ослабляет дозу излучения в 2 раза. При известной кратности ослабления К можно определить требующееся число слоев половинного ослабления n и, следовательно, толщину защиты. По определœению K = 2 n Кроме формулы, приведем приближенную табличную зависимость между кратностью ослабления и числом слоев половинного ослабления:

При известном количестве слоев половинного ослабления n толщина защиты х = Δ 1/2 n.

К примеру слой половинного ослабления Δ 1/2 для свинца равен 1,3 см, для свинцового стекла - 2,1 см.

Метод защиты расстоянием. Мощность дозы фотонного излучения от точечного источника в пустоте изменяется обратно пропорционально квадрату расстояния. По этой причине если мощность дозы Pi определœена на каком-то известном расстоянии Ri, то мощность дозы Рх на любом другом расстоянии Rx рассчитывается по формуле:

Р х = Р 1 R 1 2 / R 2 x (6.4)

Метод защиты временем. Метод защиты временем (ограничение времени пребывания работника под воздействием ионизирующего излучения) наиболее широко применяется при производстве радиационно-опасных работ в зоне контролируемого доступа (ЗКД). Эти работы оформляются дозиметрическим нарядом, где указывается разрешенное время производства работ.

Глава 7 МЕТОДЫ РЕГИСТРАЦИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Расчет защиты от альфа и бета-излучения

Метод защиты временем.

Метод защиты расстоянием;

Метод защиты барьером (материалом);

Доза внешнего облучения от источников гамма-излучения пропорциональна времени облучения. Кроме того, для тех источников, которые по своим размерам можно считать точечными, доза обратно пропорциональна квадрату расстояния от него. Следовательно, уменьшение дозы облучения персонала от этих источников может быть достигнуто не только использованием метода защиты барьером (материалом), но и ограничением времени работы (защита временем) или увеличением расстояния от источника излучения до работающего (защита расстоянием). Эти три метода используются при организации радиационной защиты на АЭС.

Для расчета защиты от альфа и бета-излучения обычно достаточно определить максимальную длину пробега, которая зависит от их начальной энергии, а также от атомного номера, атомной массы и плотности поглощающего вещества.

Защита от альфа-излучения на АЭС (например, при приемке «свежего» топлива) из-за малых длин пробегов в веществе не представляет сложностей. Главную опасность альфа-активные нуклиды представляют только при внутреннем облучении организма.

Максимальную длину пробега бета-частиц можно определить по следующим приближенным формулам, см:

для воздуха- R β =450 E β , где E β -граничная энергия бета-частиц, МэВ;

для легких материалов (алюминий) - R β = 0,1E β (при Е β < 0,5 МэВ)

R β =0,2E β (при Е β > 0,5 МэВ)

В практике работы на АЭС встречаются источники гамма-излучения различной конфигурации и размеров. Мощность дозы от них может быть измерена соответствующими приборами или рассчитана математически. В общем случае мощность дозы от источника определяется полной или удельной активностью, испускаемым спектром и геометрическими условиями - размерами источника и расстоянием до него.

Простейшим типом гамма-излучателя является точечный источник. Он представляет собой такой гамма-излучатель, для которого без существенной потери точности расчета можно пренебречь его размерами и самопоглощением излучения в нем. Практически можно считать точечным источником любое оборудование, являющееся гамма-излучателем на расстояниях, более чем в 10 раз превышающих его размеры.

Для расчета защиты от фотонного излучения удобно пользоваться универсальными таблицами расчета толщины защиты в зависимости от кратности ослабления излучения К и энергии гамма-квантов. Такие таблицы приведены в справочниках по радиационной безопасности и вычислены на основании формулы ослабления в веществе широкого пучка фотонов от точечного источника с учетом фактора накопления.



Метод защиты барьером (геометрия узкого и широкого пучка) . В дозиметрии существуют понятия "широкие" и "узкие" (коллимированные) пучки фотонного излучения. Коллиматор подобно диафрагме ограничивает попадание рассеянного излучения в детектор (рис. 6.1). Узкий пучок используют, например, в некоторых установках для градуировки дозиметрических приборов.

Рис. 6.1. Схема узкого пучка фотонов

1 - контейнер; 2 - источник излучения; 3 - диафрагма; 4 - узкий пучок фотонов

Рис. 6.2. Ослабление узкого пучка фотонов

Ослабление узкого пучка фотонного излучения в защите в результате взаимодействия его с веществом происходит по экспоненциальному закону:

I = I 0 e - m x (6.1)

где Iо - произвольная характеристика (плотность потока, доза, мощность дозы и др.) первоначального узкого пучка фотонов; I - произвольная характеристика узкого пучка после прохождения защиты толщиной х, см;

m - линейный коэффициент ослабления, определяющий долю моноэнергетических (имеющих одинаковую энергию) фотонов, испытавших взаимодействие в веществе защиты на единицу пути, см -1 .

Выражение (7.1) справедливо также при использовании массового коэффициента ослабления m m вместо линейного. При этом толщина защиты должна быть выражена в граммах на квадратный сантиметр (г/см 2), тогда произведение m m x будет оставаться безразмерным.

В большинстве случаев при расчетах ослабления фотонного излучения используют широкий пучок, т. е. пучок фотонов, где присутствует рассеянное излучение, которым пренебречь нельзя.

Различие между результатами измерений узкого и широкого пучков характеризуется фактором накопления В:

В = Iшир/Iузк, (6.2)

который зависит от геометрии источника, энергии первичного фотонного излучения, материала, с которым взаимодействует фотонное излучение, и его толщины, выраженной в безразмерных единицах mx.

Закон ослабления для широкого пучка фотонного излучения выражается формулой:

I шир = I 0 B e - m x = I 0 e - m шир х; (6.3),

где m, m шир - линейный коэффициент ослабления для узкого и широкого пучков фотонов соответственно. Значения m и В для различных энергий и материалов приведены в справочниках по радиационной безопасности. Если в справочниках указан m для широкого пучка фотонов, то фактор накопления учитывать не следует.

Для защиты от фотонного излучения наиболее часто применяют следующие материалы: свинец, сталь, бетон, свинцовое стекло, воду и т. п.

Метод защиты барьером (расчет защиты по слоям половинного ослабления). Кратность ослабления излучения К представляет собой отношение измеренной или рассчитанной мощности эффективной (эквивалентной) дозы Р изм без защиты, к допустимому уровню среднегодовой мощности эффективной (эквивалентной) дозы Р ср в той же точке за защитным экраном толщиной х:

Р ср = ПД А /1700 час = 20мЗв / 1700час = 12 мкЗв/час.;

где Р ср – допустимый уровень среднегодовой мощности эффективной (эквивалентной) дозы;

ПД А - предел эффективной (эквивалентной) дозы для персонала группы А.

1700 час – фонд рабочего времени персонала группы А за год.

K = Р изм / Р ср;

где Р изм - измеренная мощность эффективной (эквивалентной) дозы без защиты.

При определении по универсальным таблицам необходимой толщины защитного слоя данного материала х (см), следует знать энергию фотонов e (Мэв) и кратность ослабления излучения К.

При отсутствии универсальных таблиц оперативное определение примерной толщины защиты можно выполнять, пользуясь приближенными значениями споя половинного ослабления фотонов в геометрии широкого пучка. Слой половинного ослабления Δ 1/2 представляет собой такую толщину защиты, которая ослабляет дозу излучения в 2 раза. При известной кратности ослабления К можно определить требующееся число слоев половинного ослабления n и, следовательно, толщину защиты. По определению K = 2 n Кроме формулы, приведем приближенную табличную зависимость между кратностью ослабления и числом слоев половинного ослабления:

При известном количестве слоев половинного ослабления n толщина защиты х = Δ 1/2 n.

К примеру слой половинного ослабления Δ 1/2 для свинца равен 1,3 см, для свинцового стекла - 2,1 см.

Метод защиты расстоянием. Мощность дозы фотонного излучения от точечного источника в пустоте изменяется обратно пропорционально квадрату расстояния. Поэтому если мощность дозы Pi определена на каком-то известном расстоянии Ri, то мощность дозы Рх на любом другом расстоянии Rx рассчитывается по формуле:

Р х = Р 1 R 1 2 / R 2 x (6.4)

Метод защиты временем. Метод защиты временем (ограничение времени пребывания работника под воздействием ионизирующего излучения) наиболее широко применяется при производстве радиационно-опасных работ в зоне контролируемого доступа (ЗКД). Эти работы оформляются дозиметрическим нарядом, где указывается разрешенное время производства работ.

Глава 7 МЕТОДЫ РЕГИСТРАЦИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Для уменьшения воздействия внешнего гамма-излучения во всем мире применяются три главных метода:

Время;
Расстояние;
Экранирование (установка защиты).

Время

ДОЗА = МОЩНОСТЬ ДОЗЫ * ВРЕМЯ

Один из факторов, влияющих на дозу облучения, - время.

Зависимость простая: Меньше время воздействия ИИ на организм - меньше доза.

Грубый расчет может помочь определить дозу, которую получит работник в течение некоторого отрезка времени, или, как долго он может оставаться на рабочем месте без снижения мощности дозы.

Например:

Работник собирается выполнить работу, которая требует приблизительно полтора часа. Мощность дозы на рабочем месте 1,0 мЗв/ч (mSv/h). Определить ожидаемую дозу облучения.

ДОЗА = МОЩНОСТЬ ДОЗЫ * ВРЕМЯ = 1,0 мЗв/ч (mSv/h) * 1,5 ч (h) = 1,5 мЗв (mSv).

Ответ: ожидаемая доза будет равна 1,5 мЗв (mSv).

Если работник работает более быстро и закончит работу за один час, то он уменьшит дозу до 1,0 мЗв (mSv): (1,0 mSv/h * 1,0 h = 1,0 mSv).

Если необходим перерыв в работе (на отдых и др.), то работник должен выйти из зоны воздействия ИИ в место, где уровень излучения настолько низок насколько это возможно.

Расстояние

Исходя из формулы расчета дозы облучения:

ДОЗА = МОЩНОСТЬ ДОЗЫ * ВРЕМЯ

Низкая мощность дозы означает маленькую дозу облучения. Свойством всех источников ИИ является то, что мощность дозы уменьшается с расстоянием.

Источник излучения может иметь различную конфигурацию: точечный, объемный, поверхностный или линейный источник.

Излучение от точечного источника уменьшается пропорционально квадрату расстояния. Например:

Мощность дозы на расстоянии одного метра от источника составляет - 9 мЗв/ч (mSv/h). Если работник увеличивает расстояние до трех метров, мощность дозы будет уменьшена до 1 мЗв/ч (mSv/h).

Однако, большинство источников излучения - не точечные источники. Очень много линейных источников, имеются также крупные объемные источники типа радиоактивных емкостей и теплообменников.

Для линейных источников и крупных источников, мощность дозы уменьшается пропорционально расстоянию.

На расстоянии одного метра от источника мощность дозы - 9 мЗв/ч (mSv/h). На расстоянии трех метров она составит - 3 мЗв/ч (mSv/h).

С увеличением расстояния от источника ИИ, мощность дозы также уменьшится.

Простая и эффективная мера защиты от ИИ - находиться настолько далеко от источника ионизирующего излучения, насколько возможно.

Защита (экранирование)

Исходя из формулы расчета дозы облучения:

ДОЗА = МОЩНОСТЬ ДОЗЫ * ВРЕМЯ

Как сказано выше, мощность дозы, которой облучается работник, определяет дозу облучения, которую он получает. Чем меньше мощность дозы, тем меньше доза облучения.

Мощность дозы может быть уменьшена посредством установки защиты (экранирования), так как любая материя поглощает лучистую энергию при облучении. Именно поэтому работник подвергается меньшему облучению, если имеется защита между ним и источником излучения.

Обратите внимание на альфа-, бета-, и гамма-излучение, воздействующие на тонкий лист бумаги . Как Вы знаете, пробег альфа-излучения довольно маленький. Оно останавливается тонким слоем кожи, тем более листом бумаги. Бета- и гамма-излучение лист бумаги не остановит.

Плексиглас (см. рисунок 7.8) остановит бета-излучение полностью. Гамма-излучение будет несколько ослаблено, но, в целом, свободно проникает сквозь плексиглас.

Следующий вид защиты - свинцовый защитный экран. Здесь гамма-излучение будет уменьшено, но оно не будет остановлено полностью.

Гамма - излучение, наиболее обычный вид излучения на атомной электростанции, полностью не может быть экранировано, оно может только быть уменьшено. Лучшими материалами экранирования являются бетон и вода.

Оптимальная толщина защитного экрана зависит от энергии излучения и активности источника излучения. Вычисление толщины защиты довольно сложное, но можно воспользоваться "правилом большого пальца".
1 сантиметр свинца уменьшит мощность дозы гамма-излучения (кобальт-60) в два раза.
5 сантиметров бетона уменьшит мощность дозы гамма-излучения (кобальт-60) в два раза.
10 сантиметров воды уменьшит мощность дозы гамма-излучения (кобальт-60) в два раза.

Расстановка и снятие защитных экранов выполняется с разрешения и под руководством службы РБ!

) l i - длина релаксации дозы нейтронного излучения, энергия которого больше 2,5 МэВ;

где L 0 - расстояние от точечного источника излучения до вершины конической поверхности с углом 2 q 0 при вершине, м;

п - число слоев защиты.

где i = 1, ..., 26;

E i -1 ( n ) - верхняя граница энергетической группы, для нейтронного излучения, МэВ;

E i ( n ) - нижняя граница энергетической группы для нейтронного излучения, МэВ;

Е 0 = 10,5 МэВ.

E j -1 ( g ) - верхняя граница энергетической группы для гамма-излучения, МэВ;

E j ( g ) - нижняя граница энергетической группы для гамма-излучения, МэВ;

где D н - мощность дозы нейтронного излучения;

D g - мощность дозы гамма-излучения.

где q i - в соответствии с приложением вектор-столбец, составляющие которого элементы i -го столбца матрицы Q .

где Z ( k ) - критерий поиска, вычисляемый в соответствии с приложением ;

Т i ( k ) - квадратичный функционал, вычисляемый в соответствии с приложением .

Если для всех i = 1, 2, ..., n + 1 G i ( k ¢ ) больше нуля, то оптимизация функции Т закончена и переходят к вычислениям по п. со значением счетчика полностью законченных этапов оптимизации k . Если хотя бы одно значение G i ( k ¢ ) меньше нуля, то переходят к вычислениям по п. .

заменяют X ( k ¢ ) H на X ( k ¢ ) n + 5 и повторяют алгоритм, начиная с п. при новом значении счетчика k ¢ = k ¢ + 1.

k ¢ = k ¢ + 1.

заменяют X ( k ) H на X ( k ) n + 5 и повторяют выполнение алгоритма, начиная с п. при новом значении счетчика k = k + 1.

и переходят к вычислениям по п. при k = k + 1.

ПРИЛОЖЕНИЕ 1

Константы, необходимые для расчета доз по инженерной методике

b 1 , см -1

b 2 , см -1

a g

a н

a g

l н, см -1

m 1 i , см -1

m * i=>k , см -1

r , г/см 3

* Примечание. Индекс i при коэффициенте m обозначает материал слоя, в котором образуется вторичное гамма-излучение, индекс j обозначает материал слоя, для которого выполняется расчет.

ПРИЛОЖЕНИЕ 2

E i , МэВ

мкбэр/с

1/см 2 × с

Номер энергетической группы i

E i , МэВ

мкбэр/с

1/см 2 × с

E i , МэВ

К g i ,

мкбэр/с

1/см 2 × с

S g i ,

Номер энергетической группы i

E i , МэВ

К g i ,

мкбэр/с

1/см 2 × с

S g i ,

где k = 0 , ..., К .

Групповую плотность тока J k в i- й группе в каждой точке r k также представляют в виде суммы двух компонент

где k = 0 , ..., К .

Групповое сечение взаимодействия излучения с материалом j -го слоя;

Второй момент разложения внутри группового сечения рассеяния для материала j -го слоя;

r k , ( j ) - координата внутренней поверхности j -го слоя.

где a k i , b k i , g k i - коэффициенты уравнений;

d k i - правая часть уравнений.

где A 1 = 1 - D r 1 /3r 1 ; B 1 = 1 - D r 1 /3r 0 ;

К числу технических средств защиты относится устройство различных экранов из материалов, отражающих и поглощающих радиоактивное излучение. Экраны устраиваются как стационарные, так и передвижные (рис. 58).

При расчете защитных экранов определяют их материал и толщину, которые зависят от вида излучения, энергии частиц и квантов и необходимой кратности его ослабления. Характеристика защитных материалов и опыт работы с источниками излучений позволяют наметить преимущественные области использования того или иного защитного материала.

Металл чаще всего применяют для сооружения передвижных устройств, а строительные материалы (бетон, кирпич и др.) — для сооружения стационарных защитных устройств.

Прозрачные материалы чаще всего применяют для смотровых систем и поэтому они должны обладать не только хорошими защитными, но и высокими оптическими свойствами. Хорошо удовлетворяют таким требованиям следующие материалы: свинцовое стекло, известковое стекло, стекло с жидким наполнителем (бромистый цинк, хлористый цинк);

Находит применение в качестве защитного материала от гамма-лучей свинцовая резина.

Рис. 58. Передвижной экран

Расчет защитных экранов базируется на законах взаимодействия различных видов излучений с веществом. Защита от альфа-излучений не является сложной задачей, так как альфа-частицы нормальных энергий поглощаются слоем живой ткани 60 мкм, в то время как толщина эпидермиса (омертвевшей кожи) равна 70 мкм. Слой воздуха в несколько сантиметров или лист бумаги являются достаточной защитой от альфа-частиц.

При прохождении бета-излучения через вещество возникает вторичное излучение, поэтому в качестве защитных необходимо применять легкие материалы (алюминий, плексиглас, полистирол), так как энергия тормозного излучения увеличивается с ростом атомного номера материала.

Для защиты от бета-частиц (электронов) высоких энергий используют экраны из свинца, но внутренняя облицовка экранов должна быть изготовлена из материала с малым атомным номером, чтобы уменьшить первоначальную энергию электронов, а следовательно, и энергию излучения, возникающего в свинце.

Толщина защитного экрана из алюминия (г/см2) определяется из выражения

d = (0,54Еmax - 0,15),

где Еmax — максимальная энергия бета-спектра данного радиоактивного изотопа, МэВ.

При расчете защитных устройств в первую очередь необходимо учитывать спектральный состав излучения, его интенсивность, а также расстояние от источника, на котором находится обслуживающий персонал, и время пребывания в сфере воздействия излучения.

В настоящее время на основании имеющихся расчетных и экспериментальных данных известны таблицы кратности ослабления, а также различного рода номограммы, позволяющие определить толщину защиты от гамма-излучений различных энергий. В качестве примера на рис. 59 приведена номограмма для расчета толщины свинцовой защиты от точечного источника для широкого пучка гамма-излучений Со60, которая обеспечивает снижение дозы излучения до предельно допустимой. На оси абсцисс отложена толщина защиты d, на оси ординат коэффициент К1 равный

(24)

где М — гамма-эквивалент препарата, мг*экв. Ra;

t — время работы в сфере воздействия излучения, ч; R — расстояние от источника, см. Например, надо рассчитать защиту от источника Со60, при М = 5000 мг-экв Ra, если обслуживающий персонал находится на расстоянии 200 см в течение рабочего дня, т. е. t = 6 ч.

Подставляя значения М, R и t в выражение (24), определяем

По номограмме (см. рис. 59) получаем, что для К1 = 2,5-10-1 толщина защиты из свинца d = 7 см.

Другой тип номограммы приведен на рис. 60. Здесь на оси ординат отложена кратность ослабления К, равная

K=Д0/Д

Используя выражение (23), получим

где D0 — доза, создаваемая источником излучения в данной точке в отсутствие защиты; Д — доза, которая должна быть создана в данной точке после устройства защиты.

Рис. 59. Номограмма для расчета толщины свинцовой защиты от точечного источника для широкого пучка гамма-излучения Со60

Предположим, необходимо рассчитать толщину стен помещения, в котором расположена гамма-терапевтическая установка, заряженная препаратом Cs137 в 400 г-экв Ra (М = = 400 000 мг-экв Ra). Ближайшее расстояние, на котором находится обслуживающий персонал, в соседнем помещении R = 600 см. Согласно санитарным нормам в соседних помещениях, в которых находятся люди, не связанные с работой с радиоактивными веществами, доза излучения не должна превышать 0,03 бэр/неделю или для гамма-излучения примерно 0,005 рад за рабочий день, т. е. Д = 0,005 рад за t = 6 ч ослабления, воспользуемся формулой (23). Чтобы оценить кратность

По рис. 60 определяем, что для К = 1,1 . 104, толщина защиты из бетона равна примерно 70 см.

При выборе защитного материала надо руководствоваться его конструкционными свойствами, а также требованиями к габариту и массе защиты. Для защитных кожухов различного типа (гамма-терапевтических, гамма-дефектоскопических), когда существенную роль играет масса, наиболее выгодными защитными материалами являются материалы, которые лучше всего ослабляют гамма-излучение. Чем больше плотность и порядковый номер вещества, тем больше степень ослабления гамма-излучений.

Поэтому для указанных выше целей чаще всего используют свинец, а иногда даже уран. В этом случае толщина защиты меньше, чем при использовании другого материала, а следовательно, меньше масса защитного кожуха.

Рис. 60. Номограмма для расчета толщины защиты от гамма-излучения по кратности ослабления

При создании стационарной защиты (т. е. защиты помещений, в которых ведутся работы с гамма-источниками) , обеспечивающей пребывание людей в соседних комнатах, наиболее экономично и удобно использовать бетон. Если мы имеем дело с мягким излучением, при котором существенную роль играет фотоэффект, в бетон добавляют вещества с большим порядковым номером, в частности барит, что позволяет уменьшить толщину защиты.

В качестве защитного материала для хранилища часто используют воду, т. е. препараты опускают в бассейн с водой, толщина слоя которой обеспечивает необходимое снижение дозы излучения до безопасных уровней. При наличии водяной защиты более удобно проводить зарядку и перезарядку установки, а также выполнять ремонтные работы.

В некоторых случаях условия работы с источниками гамма-излучения могут быть такими, что невозможно создать стационарную защиту (при перезарядке установок, извлечении радиоактивного препарата из контейнера, градуировке прибора и т. д.). Здесь имеется в виду, что активность источников невелика. Чтобы обезопасить обслуживающий персонал от облучения, надо пользоваться, как говорят «защитой временем» или «защитой расстоянием». Это значит, что все манипуляции с открытыми источниками гамма-излучения следует производить при помощи длинных захватов или держателей. Кроме того, ту или иную операцию надо производить только за тот промежуток времени, в течение которого доза, полученная работающим, не превысит установленной санитарными правилами нормы. Такие работы нужно вести контролем дозиметриста. При этом в помещении не должны находиться посторонние лица, а зону, в которой доза превышает предельно допустимую за время работы, необходимо оградить.

Необходимо периодически производить контроль защиты при помощи дозиметрических приборов, так как с течением времени она может частично потерять свои защитные свойства вследствие появления тех или иных незаметных нарушений ее целостности, например трещин в бетонных и баритобетонных ограждениях, вмятин и разрывов свинцовых листов и т. д.

Расчет защиты от нейтронов производят по соответствующим формулам или номограммам. В качестве защитных материалов в этом случае следует брать вещества с малым атомным номером, ибо при каждом столкновении с ядром нейтрон теряет тем большую часть своей энергии, чем ближе масса ядра к массе нейтрона. Для защиты от нейтронов обычно используют воду, полиэтилен. Практически не бывает чистых потоков нейтронов. Во всех источниках помимо нейтронов существуют мощные потоки гамма-излучения, которые образуются в процессе деления, а также при распаде продуктов деления. Поэтому при проектировании защиты от нейтронов всегда надо одновременно предусматривать защиту от гамма-излучений.

Полезная информация: