Общая характеристика р-элементов VIА-группы. Халькогены. Соединения селена и теллура Химические свойства и применение серной кислоты

В VIА-группу периодической системы элементов Д.И. Менделеева входят кислород, сера, селен, теллур, полоний. Первые четыре из них имеют неметаллический характер. Общее название элементов этой группы халькогены, что в переводе с греч. означает «образующие руды», указывая на их нахождение в природе.

Электронная формула валентной оболочки атомов элементов VIА-группы.

Атомы этих элементов имеют по 6 валентных электронов на s- и р-орбиталях внешнего энергетического уровня. Из них две р-орбитали заполнены наполовину.

Атом кислорода отличается от атомов других халькогенов отсутствием низколежащего d-подуровня. Поэтому кислород, как правило, способен образовывать только две связи с атомами других элементов. Однако в некоторых случаях наличие неподеленных пар электронов на внешнем энергетическом уровне по­зволяет атому кислорода образовывать дополнительные связи по донорно-акцепторному механизму.

У атомов остальных халькогенов при поступлении энергии извне число неспаренных электронов может увеличиваться в результате перехода s- и р-электронов на d-подуровень. Поэтому атомы серы и других халькогенов способны образовывать не только 2, но также и 4, и 6 связей с атомами других элементов. Например, у атома серы в возбужденном состоянии электроны внешнего энергетического уровня могут приобретать электронную конфигурацию 3s 2 3р 3 3d 1 и 3s 1 3р 3 3d 2:

В зависимости от состояния электронной оболочки проявляются разные степени окисления (СО). В соединениях с металлами и водородом элементы этой группы проявляют СО = -2. В соединениях же с кислородом и неметаллами сера, селен и теллур могут иметь СО = +4 и СО = +6. В некоторых соединениях они проявляют СО = +2.

Кислород уступает по электроотрицательности только фтору. Во фтороксиде F 2 О степень окисления кислорода положительна и равна +2. С остальными элементами кислород проявляет обычно в соединениях степень окисления -2, за исключением пероксида водорода Н 2 О 2 и его производных, в которых кислород имеет степень окисления -1. В живых организмах кислород, сера и селен входят в состав биомолекул в степени окисления -2.

В ряду О - S - Sе-Те - Ро увеличиваются радиусы атомов и ионов. Соответственно в этом же направлении закономерно понижается энергия ионизации и относительная электроотрицательность.

С увеличением порядкового номера элементов VIА-группы окислительная активность нейтральных атомов понижается и увеличивается восстановительная активность отрицательных ионов. Все это приводит к ослаблению неметаллических свойств халькогенов при переходе от кислорода к теллуру.

С увеличением порядкового номера халькогенов возрастают характерные координационные числа. Это связано с тем, что при переходе от р-элементов четвертого периода к р-элементам пятого и шестого периодов в образовании σ- и π-связей все большую роль начинают играть d- и даже f-орбитали. Так, если для серы и селена наиболее характерны координационные числа 3 и 4, то для теллура - 6 и даже 8.

В нормальных условиях водородные соединения H 2 Э элементов VIА-группы, за исключением воды, - газы с очень неприятным запахом. Термодинамическая стабильность этих соединений уменьшается от воды к водородтеллуриду Н 2 Те. В водных растворах они проявляют слабокислотные свойства. В ряду H 2 О-H 2 S-H 2 Sе- H 2 Те сила кислот возрастает.

Это объясняется увеличением радиусов ионов Э 2- и соответствующим ослаблением связей Э-Н. В том же направлении растет восстановительная способность H 2 Э.

Сера, селен, теллур образуют два ряда кислотных оксидов: ЭO 2 и ЭО 3 . Им соответствуют кислотные гидроксиды состава H 2 ЭО 3 и H 2 ЭО 4 . Кислоты H 2 ЭО 3 в свободном состоянии неустойчивы. Соли этих кислот и сами кислоты проявляют окислительно-восстановительную двойственность, так как элементы S, Sе и Те имеют в этих соединениях промежуточную степень окисления + 4.

Кислоты состава Н 2 ЭО 4 более устойчивы и в реакциях ведут себя как окислители (высшая степень окисления элемента +6).

Химические свойства соединений кислорода. Кислород - самый распространенный элемент в земной коре (49,4%). Высокое содержание и большая химическая активность кислорода определяют преобладающую форму существования большинства элементов Земли в виде кислородсодержащих соединений. Кислород входит в состав всех жизненно важных органических веществ - белков, жиров, углеводов.

Без кислорода невозможны многочисленные чрезвычайно важные жизненные процессы, например дыхание, окисление аминокислот, жиров, углеводов. Только немногие растения, называемые анаэробными, могут обходиться без кислорода.

У высших животных (рис. 8.7) кислород проникает в кровь, соединяется с гемоглобином, образуя легко диссоциирующее соединение оксигемоглобин. С потоком крови это соединение поступает в капилляры различных органов. Здесь кислород отщепляется от гемоглобина и через стенки капилляров диффундирует в ткани. Связь между гемоглобином и кислородом непрочная и осуществляется за счет донорно-акцепторного взаимодействия с ионом Fе 2+ .

В состоянии покоя человек вдыхает примерно 0,5м 3 воздуха в час. Но лишь 1/5 ч. вдыхаемого с воздухом кислорода удерживается в организме. Однако избыток кислорода (4 / 5) необходим для создания высокой его концентрации в крови. Это в соответствии с законом Фика обеспечивает достаточную скорость диффузии кислорода через стенки капилляров. Таким образом, за сутки человек фактически использует около 0,1м 3 кислорода.

В тканях кислород расходуется. на окисление различных веществ. Эти реакции в конечном счете приводят к образованию углерода диоксида, воды и созданию запаса энергии.

Кислород расходуется не только в процессе дыхания, но и в процессе гниения растительных и животных остатков. В результате процесса гниения сложных органических веществ образуются их продукты окисления: СО 2 , Н 2 О и др. Регенерация кислорода совершается в растениях.

Таким образом, в результате круговорота кислорода в природе поддерживается его постоянное содержание в атмосфере. Естественно, что круговорот кислорода в природе тесно связан с круговоротом углерода (рис. 8.8).

Элемент кислород существует в виде двух простых веществ (аллотропные модификации): дикислорода (кислорода) О 2 и трикислорода (озона) О 3 . В атмосфере практически весь кислород содержится в виде кислорода О 2 , содержание же озона очень мало. Максимальная объемная доля озона на высоте 22км составляет всего лишь 10 -6 %.

Молекула кислорода О 2 в отсутствие других веществ очень стабильна. Наличие в молекуле двух неспаренных электронов обусловливает ее высокую реакционную способность. Кислород - один из самых активных неметаллов. С большинством простых веществ он реагирует непосредственно, образуя оксиды Э x O y Степень окисления кислорода в них равна -2. В соответствии с изменением структуры электронных оболочек атомов характер химической связи, а следовательно, структура и свойства оксидов в периодах и группах системы элементов изменяются закономерно. Так, в ряду оксидов элементов второго периода Li 2 О-ВеО-B 2 О 3 -СО 2 -N 2 O 5 полярность химической связи Э-О от I к V группе постепенно уменьшается. В соответствии с этим ослабляются основные и усиливаются кислотные свойства: Li 2 О - типичный основной оксид, ВеО - амфотерный, а B 2 О 3 , СО 2 и N 2 O 5 - кислотные оксиды. Аналогично изменяются кислотно-основные свойства и в других периодах.

В главных подгруппах (А-группах) с увеличением порядкового номера элемента ионность связи Э-О в оксидах обычно увеличивается.

Соответственно основные свойства оксидов в группе Li-Nа-К-Rb-Сs и других А-группах возрастают.

Свойства оксидов, обусловленные изменением характера химической связи, представляют собой периодическую функцию заряда ядра атома элемента. Об этом свидетельствует, например, изменение по периодам и группам температур плавления, энтальпий образования оксидов в зависимости от заряда ядра.

Полярность связи Э-ОН в гидроксидах Э(ОН) n , а следовательно, и свойства гидроксидов закономерно изменяются по группам и периодам системы элементов.

Например, в IА-, IIА- и IIIА-группах сверху вниз с увеличением радиусов ионов полярность связи Э-ОН возрастает. В результате в воде легче идет ионизация Э-ОН → Э + + ОН - . Соответственно усиливаются основные свойства гидроксидов. Так, в группе IА основные свойства гидроксидов щелочных металлов усиливаются в ряду Li-Nа-К-Rb-Сs.

В периодах слева направо с уменьшением ионных радиусов и увеличением заряда иона полярность связи Э-ОН уменьшается. В результате в воде легче идет ионизация ЭОН ⇄ ЭО - + Н + . Соответственно в этом направлении усиливаются кислотные свойства. Так, в пятом периоде гидроксиды RbОН и Sr(ОН) 2 являются основаниями, In(ОН) 3 и Sn(ОН) 4 - амфотерными соединениями, а Н и Н 6 ТеО 6 - кислотами.

Наиболее распространенный на земле оксид - водород оксид или вода. Достаточно сказать, что она составляет 50-99% массы любого живого существа. В организме человека содержится 70-80% воды. За 70 лет жизни человек выпивает около 25 000 кг воды.

Благодаря своей структуре вода обладает уникальными свойствами. В живом организме она является растворителем органических и неорганических соединений, участвует в процессах ионизации молекул растворенных веществ. Вода является не только средой, в которой протекают биохимические реакции, но и сама интенсивно участвует в гидролитических процессах.

Жизненно важна способность кислорода к образованию оксигенильных комплексов с различными веществами. Ранее рассмотрены примеры оксигенильных комплексов О 2 с ионами металлов - переносчиков кислорода в живых организмах - оксигемоглобин и оксигемоцианин:

НbFе 2 + + О 2 → НbFе 2+ ∙О 2

НсСu 2+ + О 2 → НсСu 2+ ∙О 2

где Нb - гемоглобин, Нc - гемоцианин.

Имея две неподеленные пары электронов, кислород выступает в качестве донора в этих координационных соединениях с ионами металлов. В других соединениях кислород образует различные водородные связи.

В настоящее время большое внимание уделяется получению оксигенильных комплексов переходных металлов, которые могли бы выполнять функции, сходные с функциями соответствующих бионеорганических комплексных соединений. Состав внутренней координационной сферы этих комплексов аналогичен природным активным центрам. В частности, перспективными по способности обратимо присоединять и отдавать элементный кислород являются комплексы кобальта с аминокислотами и некоторыми другими лигандами. Эти соединения в известной степени можно рассматривать как заменители гемоглобина.

Одной из аллотропных модификаций кислорода является озон О 3 . По своим свойствам озон сильно отличается от кислорода О 2 - имеет более высокие температуры плавления и кипения, обладает резким запахом (отсюда его название).

Образование озона из кислорода сопровождается поглощением энергии:

3О 2 ⇄2О 3 ,

Озон получают при действии электрического разряда в кислороде. Образуется озон из О 2 и под действием ультрафиолетового излучения. Поэтому при работе бактерицидных и физиотерапевтических ультрафиолетовых ламп чувствуется запах озона.

Озон - сильнейший окислитель. Окисляет металлы, бурно реагирует с органическими веществами, при низкой температуре окисляет соединения, с которыми кислород не реагирует:

О 3 + 2Аg = Аg 2 О + О 2

РbS + 4О 3 = РbSО 4 + 4O 2

Широко известна качественная реакция:

2КI + О 3 + Н 2 О = I 2 + 2КОН + О 2

Окислительное действие озона на органические вещества связано с образованием радикалов:

RН + О 3 → RО 2 + ОН

Радикалы инициируют радикально-цепные реакции с биоорганическими молекулами - липидами, белками, ДНК. Такие реакции приводят к повреждению и гибели клеток. В частности, озон убивает микроорганизмы, содержащиеся в воздухе и воде. На этом основано применение озона для стерилизации питьевой воды и воды плавательных бассейнов.

Химические свойства соединений серы. По своим свойствам сера близка к кислороду. Но в отличие от него она проявляет в соединениях не только степень окисления -2, но и положительные степени окисления +2, +4 и +6. Для серы, как и для кислорода, характерна аллотропия - существование нескольких элементных веществ - ромбической, моноклинной, пластической серы. Вследствие меньшей электроотрицательности по сравнению с кислородом способность к образованию водородных связей у серы выражена слабее. Для серы характерно образование устойчивых полимерных гомоцепей, имеющих зигзагообразную форму.

Образование гомоцепей из атомов серы характерно и для ее соединений, выполняющих существенную биологическую роль в процессах жизнедеятельности. Так, в молекулах аминокислоты - цистина имеется дисульфидный мостик -S-S-:

Эта аминокислота играет важную роль в формировании белков и пептидов. Благодаря дисульфидной связи S-S полипептидные цепи оказываются скрепленными между собой (дисульфидный мостик).

Характерно для серы и образование водородсульфидной (сульфгидрильной) тиоловой группы -SН, которая присутствует в аминокислоте цистеине, белках, ферментах.

Очень важной в биологическом отношении является аминокислота метионин.

Донором метильных групп в живых организмах служит S-аденозилметионин Аd-S-СН 3 - активированная форма метионина, в которой метильная группа соединена через S с аденином Аd. Метильная группа метионина в процессах биосинтеза переносится на различные акцепторы метильных групп RН:

Аd-S-СН 3 + RН → Аd-SН + R-СН 3

Сера довольно широко распространена на Земле (0,03%). В природе присутствует в виде сульфидных (ZnS, НgS, РbS и др.) и сульфатных (Nа 2 SО 4 ∙10Н 2 О, СаSО 4 ∙2Н 2 О и др.) минералов, а также в самородном состоянии. Порошок «серы осажденной» применяют наружно в виде мазей (5-10-20%) и присыпок при лечении кожных заболеваний (себореи, псориаза). В организме образуются продукты окисления серы - политионовые кислоты с общей формулой H 2 S x O 6 (х = 3-6)

S + O 2 → H 2 S x O 6

Сера - довольно активный неметалл. Даже при небольшом нагревании она окисляет многие простые вещества, однако и сама легко окисляется кислородом и галогенами (окислительно-восстановительная двойственность).

Степень окисления -2 сера проявляет в сероводороде и его производных - сульфидах.

Сероводород (диводородсульфид) часто встречается в природе. Содержится в так называемых серных минеральных водах. Это бесцветный газ с неприятным запахом. Образуется при гниении растительных и, в особенности, животных остатков под действием микроорганизмов. Некоторые фотосинтезирующие бактерии, например зеленые серные бактерии, в качестве донора водорода используют диводородсульфид. Эти бактерии вместо кислорода О 2 выделяют элементную серу - продукт окисления Н 2 S.

Диводородсульфид - весьма токсичное вещество, так как является ингибитором фермента цитохромоксидазы - переносчика электронов в дыхательной цепи. Он блокирует перенос электронов с цитохромоксидазы на кислород О 2 .

Водные растворы Н 2 S дают слабокислую реакцию по лакмусу. Происходит ионизация по двум ступеням:

Н 2 S ⇄ Н + + НS - (I ступень)

НS - ⇄ Н + + S 2- (II ступень)

Сероводородная кислота очень слабая. Поэтому ионизация по второй ступени протекает только в очень разбавленных растворах.

Соли сероводородной кислоты называются сульфидами. В воде растворимы сульфиды только щелочных, щелочноземельных металлов и аммония. Кислые соли - гидросульфиды Э + НS и Э 2+ (НS) 2 - известны только для щелочных и щелочноземельных металлов

Являясь солями слабой кислоты, сульфиды подвергаются гидролизу. Гидролиз сульфидов многозарядных катионов металлов (Аl 3+ , Сr 3 + и др.) часто доходит до конца, он практически необратим.

Сульфиды, в особенности сероводород, являются сильными восстановителями. В зависимости от условий они могут окисляться до S, SО 2 или Н 2 SО 4:

2Н 2 S + 3О 2 = 2SО 2 + 2Н 2 О (на воздухе)

2Н 2 S + О 2 = 2Н 2 О + 2S (на воздухе)

3Н 2 S + 4НСlO 3 = 3Н 2 SО 4 + 4НСl (в растворе)

Некоторые белки, содержащие цистеин НSСН 2 СН(NН 2)СООН и важный метаболит кофермент А, имеющие водородсульфидные (тиоловые) группы -SН, в ряде реакций ведут себя как бионеорганические производные диводородсульфида. Белки, содержащие цистеин, так же, как и диводородсульфид, можно окислить иодом. При помощи дисульфидного мостика, образующегося при окислении тиоловых групп, цистеиновые остатки полипептидных цепей соединяют эти цепи поперечной связью (образуется сшивка).

Многие серосодержащие ферменты Е-SН необратимо отравляются ионами тяжелых металлов, такими, как Сu 2+ или Аg+. Эти ионы блокируют тиольные группы с образованием меркаптанов, бионеорганических аналогов сульфидов:

Е-SН + Аg + → Е-S-Аg + Н +

В результате фермент теряет активность. Сродство ионов Аg + к тиольным группам настолько велико, что АgNО 3 можно использовать для количественного определения -SН-групп методом титрования.

Оксид серы (IV) SO 2 является кислотным оксидом. Его получают сжиганием элементной серы в кислороде или обжигом пирита FеS 2:

S + О 2 = SО 2

4FеS 2 + 11О 2 = 2Fе 2 О 3 + 8SО 2

SО 2 - газ с удушливым запахом; весьма ядовит. При растворении SО 2 в воде образуется сернистая кислота Н 2 SО 3 . Эта кислота средней силы. Сернистая кислота, будучи двухосновной, образует соли двух типов: средние - сульфиты (Nа 2 SО 3 , К 2 SО 3 и др.) и кислые - гидросульфиты (NаНSО 3 , КНSО 3 и др.). В воде растворимы лишь соли щелочных металлов и гидросульфиты типа Э 2+ (НSО 3) 2 , где Э - элементы различных групп.

Для оксида SО 2 , кислоты Н 2 SОз и ее солей характерна окислительно-восстановительная двойственность, так как сера имеет в этих соединениях промежуточную степень окисления +4:

2Nа 2 SО 3 + О 2 = 2Nа 2 SО 4

SО 2 + 2Н 2 S = 3S° + 2Н 2 O

Однако восстановительные свойства у соединений серы (IV) преобладают. Так, сульфиты в растворах окисляются даже дикислородом воздуха при комнатной температуре.

На высших животных оксид SO 2 действует прежде всего как раздражитель слизистой оболочки дыхательных путей. Токсичен этот газ и для растений. В промышленных районах, где сжигается много угля, содержащего небольшое количество соединений серы, в атмосферу выделяется сера диоксид. Растворяясь во влаге, находящейся на листьях, SО 2 образует раствор сернистой кислоты, который, в свою очередь, окисляется до серной кислоты Н 2 SО 4:

SО 2 + Н 2 О = Н 2 SО 3

2Н 2 SО 3 + О 2 = 2Н 2 SО 4

Атмосферная влага с растворенными SО 2 и Н 2 SО 4 выпадает нередко в виде кислотных дождей, приводящих к гибели растительности.

При нагревании раствора Nа 2 SО 3 с порошком серы образуется натрий тиосульфат:

Nа 2 SО 3 + S = Nа 2 S 2 О 3

Из раствора выделяется кристаллогидрат Nа 2 S 2 О 3 ∙5Н 2 О. Натрий тиосульфат - соль тиосерной кислоты Н 2 S 2 О 3 .

Тиосерная кислота очень неустойчива и разлагается на Н 2 О, SО 2 и S. Натрий тиосульфат Nа 2 S 2 О 3 ∙5Н 2 О применяют в медицинской практике как противотоксическое, противовоспалительное и десенсибилизирующее средство. Как противотоксическое средство, натрий тиосульфат используют при отравлениях соединениями ртути, свинца, синильной кислотой и ее солями. Механизм действия препарата, очевидно, связан с окислением тиосульфат-иона до сульфит-иона и элементной серы:

S 2 О 3 2- → SО 3 2- + S°

Ионы свинца и ртути, попадающие в организм с пищей или воздухом, образуют плохо растворимые нетоксичные сульфиты:

Рb 2+ + SO 3 2- = РbSO 3

Цианид-ионы взаимодействуют с элементной серой, образуя менее ядовитые тиоцианаты:

СN - + S° = NСS -

Применяют натрий тиосульфат и для лечения чесотки. После втирания в кожу раствора делают повторные втирания 6%-ного раствора НСl. В результате реакции с НСl натрий тиосульфат распадается на серу и диоксид серы:

Nа 2 S 2 О 3 + 2НСl = 2NaСl + SО 2 + S + Н 2 О

которые и оказывают губительное действие на чесоточных клещей.

Оксид серы (VI) SО 3 - летучая жидкость. При взаимодействии с водой SО 3 образует серную кислоту:

SО 3 + Н 2 О = Н 2 SО 4

Структура молекул серной кислоты соответствует сере в sр 3 - гибридном состоянии.

Серная кислота - сильная двухосновная кислота. По первой ступени она ионизирована практически полностью:

Н 2 SО 4 ⇄ Н + + НSО 4 - ,

Ионизация по второй ступени протекает в меньшей степени:

НSО 4 - ⇄ Н + + SО 4 2- ,

Концентрированная серная кислота - сильный окислитель. Она окисляет металлы и неметаллы. Обычно продуктом ее восстановления является SО 2 , хотя в зависимости от условий проведения реакции (активности металла, температуры, концентрации кислоты) могут получаться и другие продукты (S, Н 2 S).

Будучи двухосновной кислотой, Н 2 SО 4 образует два типа солей: средние - сульфаты (Na 2 SO 4 и др.) и кислые - гидросульфаты (NаНSО 4 , КНSО 4 и др.). Большинство сульфатов хорошо растворимы в воде Многие сульфаты выделяются из растворов в виде кристаллогидратов: FеSО 4 ∙7Н 2 О, СuSО 4 ∙5Н 2 О. К практически нерастворимым относятся сульфаты ВаSО 4 , SrSО 4 и РbSО 4 . Малорастворим кальций сульфат СаSО 4 . Барий сульфат нерастворим не только в воде, но и в разбавленных кислотах.

В медицинской практике сульфаты многих металлов применяют в качестве лекарственных средств Na 2 SO 4 ∙10Н 2 О - как слабительное, MgSО 4 ∙7Н 2 О - при гипертонии, как слабительное и как желчегонное средство, медный купорос СuSО 4 ∙5Н 2 О и ZnSО 4 ∙7Н 2 О - как антисептические, вяжущие, рвотные средства, барий сульфат ВаSО 4 - как контрастное вещество при рентгенологическом исследовании пищевода и желудка

Соединения селена и теллура. По химическим свойствам теллур и в особенности селен похожи на серу. Однако усиление металлических свойств у Sе и Те повышает их склонность к образованию более прочных ионных связей. Сходство физико-химических характеристик: радиусов ионов Э 2- , координационных чисел (3, 4) - обусловливает взаимозамещаемость селена и серы в соединениях. Так, селен может замещать серу в активных центрах ферментов. Замена водородсульфидной группы -SН на водородселенидную группу -SеН изменяет течение биохимических процессов в организме. Селен может выступать как синергистом, так и антагонистом серы.

С водородом Sе и Те образуют аналогичные Н 2 S очень ядовитые газы Н 2 Sе и Н 2 Те. Диводородселенид и диводородтеллурид являются сильными восстановителями. В ряду Н 2 S-Н 2 Sе-Н 2 Те восстановительная активность растет.

Для Н 2 Sе выделены как средние соли - селениды (Nа 2 Sе и др.), так и кислые соли - гидроселениды (NaНSе и др.). Для Н 2 Те известны только средние соли - теллуриды.

Соединения Sе (IV) и Те (IV) с кислородом в отличие от SО 2 - твердые кристаллические вещества SеО 2 и ТеО 2 .

Селенистая кислота Н 2 SеО 3 и ее соли селениты, например Nа 2 SеО 3 , - окислители средней силы. Так, в водных растворах они восстанавливаются до селена такими восстановителями, как SО 2 , Н 2 S, НI и др.:

Н 2 SеО 3 + 2SО 2 + Н 2 О = Sе + 2Н 2 SО 4

Очевидно, что легкость восстановления селенитов до элементного состояния обусловливает образование в организме биологически активных селенсодержащих соединений, например селеноцистеина.

SеО 3 и ТеО 3 - кислотные оксиды. Кислородные кислоты Sе (VI) и Те (VI) - селеновая Н 2 SеО 4 и теллуровая Н 6 ТеО 6 - кристаллические вещества с сильными окислительными свойствами. Соли этих кислот называются соответственно селенатами и теллуратами.

В живых организмах селенаты и сульфаты - антагонисты. Так, введение сульфатов приводит к выведению из организма избыточных селенсодержащих соединений.

§8 Элементы VI А группы.

Кислород, сера, селен, теллур, полоний.

Общие сведения элементов VI А группы:

Элементы VI А группы (кроме полония) называются халькогенидами. На внешнем электронном уровня этих элементов находятся шесть валентных электронов (ns2 np4), поэтому они в нормальном состоянии проявляют валентность 2, а в возбужденном -4 или 6 (кроме кислорода). Атом кислорода отличается от атомов других элементов подгруппы отсутствием d-подуровня во внешнем электронном слое, что обуславливает большие энергетические затраты на «распаривание» его электронов, некомпенсируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентные связи по донорно-акцепторному механизму.

Электроотрицательность этих элементов постепенно уменьшается в порядке О-S-Se-Те-Ро. Cтепень окисления от -2,+2,+4,+6. Увеличивается радиус атома, что ослабляет неметаллические свойства элементов.

Элементы этой подгруппы образуют с водородом соединения вида H2 R (H2 О,H2 S,H2 Se,H2 Те,H2 Ро).Эти соединения растворяясь в воде, образуют кислоты. Кислотные свойства увеличиваются в направлении H2 О→H2 S→H2 Se→H2 Те→H2 Ро. S,Se и Те образуют с кислородом соединения типа RO2 и RO3. Из этих оксидов образуются кислоты типа H2 RO3 и H2 RO4. С увеличением порядкового номера, силы кислот уменьшаются. Все они имеют окислительные свойства. Кислоты типа H2 RO3 проявляют и восстановительные свойства.

Кислород

Природные соединения и получения: Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе (21%); в связанном виде входит в состав воды (88,9%), минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Атмосферный воздух представляет собой смесь многих газов, основную часть которой составляют азот и кислород, и небольшое количество благородные газы, углекислый газ и водяные пары. Углекислый газ образуется в природе при горении дерева, угля и других видов топлива, дыхании животных, гниении. В некоторых местах земного шара CO2 выделяется в воздух вследствие вулканической деятельности, а также из подземных источников.

Природный кислород состоит из трех стабильных изотопов: 816 О(99,75%),817 О(0,04),818 О(0,20). Искусственным путем были также получены изотопы 814 О,815 О,819 О.

Кислород был получен впервые в чистом виде К.В.Шееле в 1772 г., а затем в 1774 г. Д.Ю.Пристли, который выделил его из HgO. Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является основной частью воздуха.

В лаборатории кислород получается следующими методами:

Э лектролизом воды. Чтобы увеличить электропроводность воды в нее добавляют раствор щелочи (обычно 30%-ый KOH) или сульфаты щелочных металлов:

В общем виде: 2H2 О →2H2 +О2

На катоде: 4H2 О+4e¯→ 2H2 +4OH¯

На аноде: 4OH−4е→2H2 О+О2

- Разложением кислородосодержащих соединений:

Термическое разложение Бертолетовой соли под действием катализатора MnO2.

KClO3 →2KCl+3О2

Термическое разложение перманганата калия

KMnO4 →K2 MnO4 +MnO2 +О2.

Термическое разложение нитратов щелочных металлов:

2KNO3 →2KNO2 +О2.

Разложением пероксидов:

2H2 О2 →2H2 О+О2.

2ВаО2 →2ВаО+О2.

Термическим разложением оксида ртути (II):

2HgO→2HgO+О2.

Взаимодействием пероксидов щелочных металлов с оксидом углерода (IV):

2Na2 О2 +2CO2 →2Na2 CO3 +О2.

Термическим разложением хлорной извести в присутствии катализатора - солей кобальта:

2Ca(OCl)Cl →2CaCl2 +О2.

Окислением пероксида водорода перманганатом калия в кислой среде:

2KMnO4 +H2 SO4 +5H2 О2 →K2 SO4 +2Mn SO4 +8H2 О+5О2.

В промышленности: В настоящее время в промышленности кислород получают фракционной перегонкой жидкого воздуха. При слабом нагревании жидкого воздуха из него сначала отделяется азот (tкип (N2)=-196ºC), затем выделяется кислород (tкип (О2)=-183ºС).

Кислород полученный этим способом содержит примеси азота. Поэтому для получения чистого кислорода полученную смесь заново дистиллируют и в конечном итоге получается 99,5% кислород. Кроме того некоторое количество кислорода получают электролизом воды. Электролитом служит 30% раствор KOH.

Кислород обычно хранят в баллонах синего цвета под давлением 15МПа.

Физико-химические свойства: Кислород - газ без цвета, запаха, вкуса, немного тяжелее воздуха, слабо растворяется в воде. Кислород при давлении 0,1 МПа и температуре -183ºС переходит в жидкое состояние, при -219ºС замерзает. В жидком и твердом состоянии притягивается магнитом.

Согласно методу валентных связей строение молекулы кислорода, представленное схемой -:Ö::Ö:, не объясняет большую прочность молекулы, имеющей паромагнитные свойства, то есть неспаренные электроны в нормальном состоянии.

В результате связи электронов двух атомов образуется одна общая электронная пара, после этого неспаренный электрон в каждом атоме образует взаимную связь с неразделенной парой другого атома и между ними образуется трех электронная связь. В возбужденном состоянии молекула кислорода проявляет диамагнитные свойства, которым соответствует строение по схеме:Ö=Ö:,

Для заполнения электронного уровня в атоме кислорода не хватает двух электронов. Поэтому кислород в химических реакциях может легко присоединять два электрона и проявлять степень окисления -2. Кислород только в соединениях с более электроотрицательным элементом фтором проявляет степень окисления +1 и +2: О2 F2, ОF2.

Кислород - сильный окислитель. Он не взаимодействует только с тяжелыми инертными газами (Kr,Xe,He,Rn), с золотом и платиной. Оксиды этих элементов образуются другими путями. Кислород входит в реакции горения, окисления как с простыми веществами так и со сложными. При взаимодействии неметаллов с кислородом образуются кислотные или соленеобразующие оксиды, а при взаимодействии металлов образуются амфотерные или смешанные оксиды Так, с фосфором кислород реагирует при температуре ~ 60 °С,

4P+5О2 → 2Р2 О5

С металлами- оксиды соответствующих металлов

4Al + 3O2 → 2Al2 O3

3Fe + 2O2 → Fe3 O4

при нагревании щелочных металлов в сухом воздухе только литии образует оксид Li2 O, а остальные-пероксиды и супероксиды:

2Na+O2 →Na2 O2 K+O2 →KO2

С водородом кислород взаимодействует при 300 °С:

2Н2 + О2 = 2Н2 О.

При взаимодействии с фтором он проявляет восстановительные свойства:

O2 + F2 = F2 O2 (в электрическом разряде),

с серой - при температуре около 250 °С:

С графитом кислород реагирует при 700 °С

С + О2 = СО2 .

Взаимодействие кислорода с азотом начинается лишь при 1200°С или в электрическом разряде:

N2 + О22NО - Q.

Кислород реагирует и со многими сложными соединениями, например, с оксидом азота (II) он реагирует уже при комнатной температуре:

2NО + О2 = 2NО2 .

При окислении сероводорода, при нагревании, образуется сера, или оксид серы (IV) в зависимости от соотношения между кислорода и сероводорода:

2Н2 S + О2 = 2S + 2Н2 О

2Н2 S + ЗО2 = 2SО2 + 2Н2 О

В большинстве реакций окисления с участием кислорода выделяется тепло и свет - такие процессы называются горением.

Озон

Озон-O3 -вторая аллотропная модификация элемента кислорода. Молекула O3 имеет угловое строение (угол между связями 116º, длинна связи О=О, l=0,1278нм) При н.у. это газ синего цвета. Жидкий озон- темно-синего цвета. Он ядовит и взрывчат особенно в жидком и твердом состоянии). Озон образуется в атмосфере при грозовых разрядах, и имеет специфический запах свежести.

Обычно озон получают в озонаторах пропусканием тихого электрического разряда через кислород (реакция эндотермическая и сильно обратима; выход озона составляет 5%):

3О22О3 ΔН=-285 кДж. В лабораторных условиях озон получают при подкислении азотной кислотой персульфата

(NH4)2 S2 O8 →H2 S2 O8 +2NH4+

H2 S2 O8 →2SO2 +O3 +H2 O

O3 образуется с небольшим выходом в результате реакции:

3F2 +H2 O(г)→6HF+O3

O3 -сильнейший окислитель, окисляет все металлы,(кроме золота и платиновых металлов) и большинство неметаллов. Он переводит низшие оксиды в высшие, а сульфиды металлов- в их сульфаты. В реакциях с участием О3 обычно образуется О2, например:

2Ag+O3 →Ag2 O+O2

PbS+4O3 →PbSO4 +4O2

NH2 +3O3 →HNO2 +H2 O

Pb(OH)2 +O3 →PbO2 +H2 O+O2

При воздействии O3 на щелочные металлы можно получить озониды- неустойчивые соединения, которые разлагаются:

2KO3 →2KO2 +O2

Как сильный окислитель, озон убивает бактерии и потому применяется для дезинфекции воздуха. Устойчивый слой озона находится в атмосфере на высоте~22км. Этот озоновый слой защищает Землю от губительного для жизни чистого ультрафиолетового излучения.

При взаимодействии озона с раствором иодида калия выделяется йод, тогда как с кислородом эта реакция не идет:

2КI + О3 + Н2 О = I2 + 2КОН + О2 .

Реакция часто используется как качественная для обнаружения ионов I - или озона. Для этого в раствор добавляют крахмал, который дает характерный синий комплекс с выделившимся йодом, причем качественная еще и потому, что озон не окисляет ионы Сl - и Br- .

Вода

Физические и химические свойства воды: Чистая вода представляет собой есцветную, без вкуса, запаха, прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает.

Вода-вещество привычное и необычное. Нет на земле вещества, более важного для нас, чем обыкновенная вода, и в то же время не существует другого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в ее свойствах.

Почти ¾ поверхности нашей планеты занято океанами и морями. Твердой водой- снегом и льдом- покрыто 20% суши. От воды зависит климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У нее очень большая теплоемкость. Нагреваясь, она поглощает тепло, остывая, отдает его. Земная вода и поглощает и возвращает очень много тепла, тем самым выравнивает климат. От космического холода предохраняют Землю те молекулы, которые рассеяны в атмосфере- в облаках и в виде паров.

Вода по физическим свойствам существенно отличается от других растворителей: При 4ºС вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается. Если бы при понижении температуры и при переходе из жидкого состояния в твердое вода изменялась аналогично другим веществам, то при приближении зимы поверхностные слои природных вод охладилась бы до 0ºС и опускались на дно до тех пор, пока вся масса водоема не приобрела бы температуру 0ºС. Вода замерзала бы, льдины погружались на дно, и водоем промерзал бы на всю глубину. Многие формы жизни в воде были бы невозможны. В действительности охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от охлаждения.

Вода обладает аномально высокой теплоемкости (4,18 Дж/г∙К), поэтому в ночное время, а также при переходе от лета к зиме, вода остывает медленно. А днем, или при переходе от зимы к лету, так же медленно нагревается, являясь, таким образом регулятором температуры на земном шаре.

Вода при обычном состоянии является жидкостью, в то время как H2 S,H2 Se,H2 Te- газы. Температуры кристаллизации и испарения воды значительно выше соответствующих температур указанных соединений.

Вода обладает очень высокой диэлектрической проницаемостью (78.5 при 298К).

Вода- хороший растворитель полярных жидкостей и соединений с ионными связями, образует кристаллогидраты со многими химическими соединениями.

Долгое время необычные свойства воды были загадкой для ученых. Они в основном обусловлены следующими причинами:

Полярный характер молекул;

Наличие не поделенных электронных пар у атома кислорода;

Водородные связи.

Связь между атомами водорода и кислорода полярная, что приводит к асимметрии в распределении электронных зарядов и, следовательно, к полярности молекулы. Длина связи составляет 96 нм, а угол между связями ~ 105º.

Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода к кислороду обуславливают образование водородных связей. Энергия связи равна 25 кДж/моль. Атом кислорода в молекуле воды находится в состоянии sp3 -гибридизации. Поэтому валентный угол НОН близок к тетраэдическому углу (109,5º).

Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкости оказывается более высокой. Это свидетельствует о том, что в жидкой фазе происходит ассоциация молекул, т.е. соединение их в более сложные агрегаты, вследствие образования между молекулами водородных связей.

В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды.

Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы воды. При плавлении льда его структура разрушается, но и в жидкой фазе сохраняются водородные связи, образуются ассоциаты, однако они существуют короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одиночные молекулы воды, при этом упаковка молекул воды становится плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает. При нагревании воды часть теплоты затрачивается на разрыв водородных связей. Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

На Земле на 6800 атомов протия приходится один атом дейтерия, а в межзвездочном пространстве один атом дейтерия приходится уже на 200 атомов протия.

Вода- весьма реакционноспособное вещество.

Вода реагирует со многими металлами с выделением водорода:

2Na + 2H2 O = H2 + 2NaOH (бурно)

2K + 2H2 O = H2 + 2KOH (бурно)

3Fe + 4H2 O = 4H2 + Fe3 O4 (только при нагревании)

Не все, а только достаточно активные металлы могут участвовать в окислительно-восстановительных реакциях этого типа. Наиболее легко реагируют щелочные и щелочноземельные металлы.

Из неметаллов с водой реагируют, например, углерод и его водородное соединение (метан). Эти вещества гораздо менее активны, чем металлы, но все же способны реагировать с водой при высокой температуре:

C + H2 O ® H2 + CO

CH4 + 2H2 O ® 4H2 + CO2

Вода разлагается на водород и кислород при действии электрического тока. Это также окислительно-восстановительная реакция, где вода является одновременно и окислителем, и восстановителем:

2H2 O 2H2 + O2

Вода реагирует со многими оксидами неметаллов . В отличие от предыдущих, эти реакции не окислительно-восстановительные, а реакции соединения:

P2 O5 +3H2 O→2H3 PO4 ; N2 O5 +H2 O→2HNO3

Оксиды щелочных и щелоочно-земельных металлов вступают в реакции соединения с водой с образованием соответствующих щелочей:

CaO+H2 O→Ca(OH)2

Не все оксиды металлов способны реагировать с водой. Часть из них практически не растворима в воде и поэтому с водой не реагирует. Это ZnO, TiO2, Cr2 O3, из которых приготовляют, например, стойкие к воде краски. Оксиды железа также не растворимы в воде и не реагируют с ней. Многие соединения металлов с неметаллами легко взаимодействуют с водой с образованием соответствующих гидроксидов металлов и водородных соединений неметаллов:

PCl3 +3H2 O → H3 PO3 + 3HCl

Al2 S3 +6H2 O→2Al(OH)3 +3H2 S

Ca3 P2+6H2 O→3Ca(OH)2 +2PH3

Na3 N+3H2 O→3NaOH+NH3

KH+H2 O→KOH+H2

Вода образует многочисленные соединения, в которых ее молекула полностью сохраняется. Это так называемые гидраты . Если гидрат кристаллический, то он называется кристаллогидратом , например:

CuSO4 +5 H2 O→CuSO4. 5H2 O

H2 SO4 + H2 O = H2 SO4. H2 O (гидрат серной кислоты)

NaOH + H2 O = NaOH. H2 O (гидрат едкого натра)

Соединения, связывающие воду в гидраты и кристаллогидраты, используют в качестве осушителей. С их помощью, например, удаляют водяные пары из влажного атмосферного воздуха.

Особая реакция воды- фотосинтез – синтез растениями крахмала (C6 H10 O5)n и других подобных соединений (углеводов), происходящая с выделением кислорода:

6n CO2 + 5n H2 O = (C6 H10 O5)n + 6n O2 (при действии света)

Вода обладает каталитической активностью. В отсутствии следов влаги практически не протекают обычные реакции, например, не окисляется натрий, белый фосфор, хлор не взаимодействует с металлами, фторводород не разрезает стекло.

Пероксид водорода

Пероксид водорода H2 O2 - соединение водорода c кислородом, содержащее рекордное количество кислорода – 94% по массе. В молекулах Н2 О2 содержатся пероксидные группы –О–О–которые во многом определяют свойства этого соединения.

Из-за несимметричного распределения связей Н-О молекула Н2 О2 сильно полярна. Между молекулами Н2 О2 возникает довольно прочная водородная связь, приводящая к их ассоциации. Поэтому в обычных условиях пероксид водорода- сиропообразная жидкость бледно-голубого цвета (плотность 1,44) с довольно высокой температурой кипения (150ºС). При хранении Н2 О2 разлагается.

Селен получают из отходов сернокислотного, целлюлозно-бумажного производства и анодных шламов электролитического рафинирования меди. В шламах селен присутствует вместе с серой, теллуром, тяжелыми и благородными металлами. Для извлечения селена шламы фильтруют и подвергают либо окислительному обжигу (около 700 °С), либо нагреванию с концентрированной серной кислотой. Образующийся летучий SeO2 улавливают в скрубберах и электрофильтрах. Из растворов технический селен осаждают сернистым газом. Применяют также спекание шлама с содой с последующим выщелачиванием селената натрия водой и выделением из раствора селена. Для получения селена высокой чистоты, используемого в качестве полупроводникового материала, черновой селен рафинируют методами перегонки в вакууме, перекристаллизации и другими.

Физические и химические свойства селена. Конфигурация внешней электронной оболочки атома Se 4s2 4p4; у двух p-электронов спины спарены, а у остальных двух - не спарены, поэтому атомы селена способны образовывать молекулы Se2 или цепочки атомов Sen. Цепи атомов селена могут замыкаться в кольцевые молекулы Se8. Разнообразие молекулярного строения обусловливает существование селена в различных аллотропических модификациях: аморфной (порошкообразный, коллоидный, стекловидный) и кристаллической (моноклинный α- и β-формы и гексагональный γ-формы). Аморфный (красный) порошкообразный и коллоидный селен (плотность 4,25 г/см3 при 25 °С) получают при восстановлении из раствора селенистой кислоты H2 SeO3, быстрым охлаждением паров селена и другими способами. Стекловидный (черный) селен (плотность 4,28 г/см3 при 25 °С) получают при нагревании любой модификации селена выше 220 °С с последующим быстрым охлаждением. Стекловидный селен обладает стеклянным блеском, хрупок. Термодинамически наиболее устойчив гексагональный (серый) селен. Он получается из других форм селена нагреванием до плавления с медленным охлаждением до 180-210 °С и выдержкой при этой температуре. Решетка его построена из расположенных параллельно спиральных цепочек атомов. Атомы внутри цепей связаны ковалентно. Все модификации селена обладают фотоэлектрическими свойствами. Гексагональный селен вплоть до температуры плавления - примесный полупроводник с дырочной проводимостью. Селен - диамагнетик (пары его парамагнитны).

На воздухе селен устойчив; кислород, вода, соляная и разбавленная серная кислоты на него не действуют, хорошо растворим в концентрированной азотной кислоте и царской водке, в щелочах растворяется диспропорционируя:

Se + 4HNO3 → H2 SeO3 + 4NO2 + H2 O

3Se + 6KOH → K2 SeO3 + 2K2 Se + 3H2 O

Селен в соединениях имеет степени окисления -2, + 2, + 4, +6. С кислородом селен образует ряд оксидов: SeO, Se2 O3, SeO2, SeO3. Два последних являются ангидридами селенистой H2 SeO3 и селеновой H2 SeО4 кислот (соли -селениты и селенаты). Наиболее устойчив SeO2. SeO2 и H2 SeO3 с сильными окислителями проявляют восстановительные свойства:

3H2 SeO3 + HClO3 → 3H2 SeO4 + HCl

С галогенами селен дает соединения SeF6, SeF4, SeCl4, SeBr4, Se2 Cl2 и другие. Сера и теллур образуют непрерывный ряд твердых растворов с селеном. С азотом селен дает Se4 N4, с углеродом -CSe2. Известны соединения с фосфором Р2 Sе3, Р4 Sе3, P2 Se5. Водород взаимодействует с селеном при t>=200 °С, образуя H2 Se; раствор H2 Se в воде называется селеноводородной кислотой. При взаимодействии с металлами селен образует селениды. Получены многочисленные комплексные соединения селена. Все соединения селена ядовиты.

Применение селена . Благодаря дешевизне и надежности селен используется в преобразовательной технике в выпрямительных полупроводниковых диодах, а также для фотоэлектрических приборов (гексагональный), электрофотографических копировальных устройств (аморфный селен), синтеза различных селенидов, в качестве люминофоров в телевидении, оптических и сигнальных приборах, терморезисторах и т. п. селен широко применяется для обесцвечивания зеленого стекла и получения рубиновых стекол; в металлургии - для придания литой стали мелкозернистой структуры, улучшения механических свойств нержавеющих сталей; в химической промышленности - в качестве катализатора; используется селен также в фармацевтической промышленности и других отраслях.

8.4 Теллур

Природные соединения и получение. Основные. источники теллура-шламы электролитического рафинирования меди и шламы сернокислотного производства, а также щелочные дроссы рафинирования свинца. При переработке сернокислотных шламов методом обжига (см. Селен)теллур остается в огарке, который выщелачивают соляной кислотой. Из солянокислого раствора пропусканием SO2 осаждают Se, после чего р-р разбавляют до содержания кислоты 10-12% и при нагревании действием SO2 осаждают теллур.

При спекании шламов с содой и последующим выщелачивании теллур переходит в р-р и при нейтрализации осаждается в виде ТеО2. Теллур получают либо прямым восстановлением ТеО2 углем, либо осаждением при действии SO2 на солянокислые растворы ТеО2. При переработке шламов сульфидным методом (выщелачивание раствором Na2 S) теллур выделяют из раствора (после осаждения Se аэрацией) действием сухого Na2 S2 O3:

Na2 TeS3 + 2Na2 SO3 → Те + 2Na2 S2 O3 + Na2 S

При переработке медеэлектролитных шламов теллур в основном переходит в содовые шлаки, получающиеся при переплавке остатков на золото-серебряный сплав («металл Дорэ»). При использовании сульфатизации часть теллура переходит в сульфатные растворы вместе с Си. Из них теллур осаждают действием металлической меди:

Н2 ТеО3 + 4H2 SO4 + 6Сu → Те + Си2 Те + 4CuSO4 + 6Н2 О

Из содовых шлаков теллур извлекают после растворения в воде либо нейтрализацией с осаждением ТеО2 (его очищают переосаждением из сульфидных или кислых растворов, растворяют в щелочи и выделяют теллур электролизом), либо прямо из содового раствора электролизом осаждают черновой теллур. Его восстанавливают А1 в щелочном растворе:

6Те + 2А1 + SNaOH → 3Na2 Te2 + 2NaAlO2 + 4Н2 О. Затем теллур осаждают аэрацией:

2Na2 Te2 + 2Н2 О + О2 → 4Те + 4NaOH

Для получения теллура высокой чистоты используют его летучие соединения, в частности ТеСl4, который очищают дистилляцией или ректификацией и экстракцией из солянокислого раствора. После гидролиза хлорида ТеО2 восстанавливают Н2. Иногда для очистки используют также Н2 Те. На завершающих стадиях очистки применяют вакуумную сублимацию, дистилляцию или ректификацию теллура, а также зонную плавку или направленную кристаллизацию.

Физические и химические свойства. Теллур-серебристо-серое вещество с металлическим блеском, в тонких слоях на просвет-красно-коричневого цвета, в парах-золотисто-желтый. Расплав теллура выше ~ 700 °С обладает металлической проводимостью. Теллур диамагнитен, магн. восприимчивость - 0,31·10-9. Твердость по Моосу 2,3, по Бринеллю 180-270 МПа; сопротивление разрыву 10,8 МПа. Теллур хрупок, при нагревании становится пластичным.

Для теллура нормальный электродный потенциал 0,56 В. Теллур, даже дисперсный, устойчив на воздухе, но при нагревании горит (пламя голубое с зеленым ореолом) с образованием ТеО2 . Кристаллический теллур реагирует с водой выше 100°С, аморфный-выше 50 °С. Концентрированные растворы щелочей растворяют теллур с образованием теллуридов и теллуритов. Соляная кислота и разбавленная H2 SO4 на теллур не действуют, конц. H2 SO4 растворяет его, образующиеся красные растворы содержат катион. HNO3 окисляет теллур до теллуристой кислоты Н2 ТеО3 (соли-теллуриты):

Te + HNO3 → H2 TeO3 + 4NO2 + H2 O

Сильными окислителями (HСlО3, КМnО4 и др.) окисляется до теллуровой кислоты Н2 ТеО4 (соли-теллураты):

4Te + 3HClO4 + 4H2 O → 4H2 TeO4 + 3HCl

Te + 3H2 O2 → H2 TeO4 + 2H2 O

Теллур растворяется в растворах сульфидов и полисульфидов щелочных металлов (с образованием тиотеллуридов и тио-теллуритов). Реагирует с растворами солей Ag. В CS2 не растворяется. С Сl2, F2 и Вr2 реагирует при комнатной т-ре, с I2 -при нагревании, сплавляется с S, P (соединений при этом не образует), As (давая As2 Te3), с Si (с образованием Si2 Te3 и SiTe), с Se (образуя при кристаллизации твердые растворы). С бором и углеродом непосредственно не взаимодействует, с СО при нагревании образует газообразный нестойкий карбонил ТеСО. При сплавлении с металлами получают теллуриды.

Теллуроводород Н2 Те-бесцветный газ с неприятным запахом; в жидком состоянии зеленовато-желтый, кристаллический-лимонно-желтый; т. кип. - 2°С, т. пл. - 51 °С; плотн. 5,81 г/л; для газа; а в сухом воздухе при комнатной температуре медленно разлагается, во влажном окисляется до теллура; при нагревании на воздухе горит, давая ТеО2; растворимость в воде 0,1 М, водный раствор-слабая кислота, К1 2·10-3; сильный восстановитель; получают взаимодействием Аl2 Те3 с соляной кислотой, а также электролизом раствора H2 SO4 с теллуровым катодом при 0°С; применяют для получения теллура высокой чистоты.

Гексафторид ТеF6 -бесцветный газ; т. пл. - 37,8°С, т. возг. -38,6°С; плотн. 10,7 г/л; в сухом воздухе устойчив, не действует на стекло; в воде растворяется, постепенно гидролизуясь с образованием фторотеллуровых кислот ТеFn (ОН)6-n, где n - от 1 до 4, и в конечном счете теллуровой кислоты; с фторидами металлов образует соединения, напр. Ag и Ba; получают фторированием теллура при нагревании. Тетрафторид TeF4 -кристаллы ромбической сингонии; т. пл. 129,6°С, т. кип. 194°С (с разложением); плотность 4,22 г/см3; очень гигроскопичен, легко гидролизуется; с фторидами щелочных металлов образует пентафторотеллураты M; получают действием SeF4 на ТеО2. Фториды теллурафторирующие агенты.

Тетрахлорид ТеС14 -желтые кристаллы; т. пл. 224°С, т. кип. 381,8°С; плотн. 3,01 г/см3; ур-ние температурной зависимости давления пара \gp (мм рт. ст.) = 8,791 - - 3941/T (497 – 653); очень гигроскопичен, водой гидролизуется; в концентрированной НС1 раств., образуя хлоротел-луровую кислоту Н2 ТеС16; из солянокислых растворов экстрагируется трибутилфосфатом и другими органическими растворителями; с хлоридами щелочных металлов образует гекса- М2 [ТеСl6 ] и пентахлортел-лураты М[ТеС15 ], с хлоридами Al, Fe(III), Zr и другие комплексы с катионами, например, ТеС13 ; получают хлорированием теллура; ТеСl4 -исходное вещество для получения теллура высокой чистоты. Коричневый дихлорид ТеС12 устойчив в парах и может быть сконденсирован в жидкость. Получены также два кристаллических низших хлорида-серебристо-серый Те2 Сl3 и метастабильный черный с металлическим блеском Те2 Сl.

Осаждением из водных р-ров можно получить сульфиды TeS2 и TeS3, разлагающиеся при нагревании; известны TeS7 и Te7 S10. Тиотеллураты (напр., Na2 TeS3) могут быть получены растворением теллура в растворе полисульфидов щелочных металлов или сере -в растворах полителлуридов, а также сплавлением. Тиотеллураты-промежуточные продукты в некоторых процессах извлечения теллура.

Применение. Важнейшая область применения теллура-синтез разложения теллуридов, обладающих полупроводниковыми свойствами. Теллур используют также в металлургии для легирования чугуна и стали, Рb, Сu (для повышения их механической и химической стойкости). Теллур и его соединения применяют в производстве катализаторов, спец. стекол, инсектицидов, гербицидов и т.п.

Полоний

Природные соединения и получение полония. Радиоактивный химический элемент VI группы периодической системы, аналог теллура. Атомный номер 84. Не имеет стабильных изотопов. Известно 27 радиоактивных изотопов полония с массовыми числами от 192 до 218, из них семь (с массовыми числами от 210 до 218) встречаются в природе в очень малых количествах как члены радиоактивных рядов урана, тория и актиния, остальные изотопы получены искусственно. Наиболее долгоживущие изотопы полония – искусственно полученные 209 Ро (t 1/2 = 102 года) и 208 Ро (t 1/2 = 2,9 года), а также содержащийся в радиево-урановых рудах 210 Ро (t 1/2 = 138,4 сут). Содержание в земной коре 210 Ро составляет всего 2·10–14 %; в 1 т природного урана содержится 0,34 г радия и доли миллиграмма полония-210. Самый короткоживущий из известных изотопов полония – 21З Ро (t 1/2 = 3·10–7 с). Самые легкие изотопы полония – чистые альфа-излучатели, более тяжелые одновременно испускают альфа- и гамма-лучи. Некоторые изотопы распадаются путем электронного захвата, а самые тяжелые проявляют также очень слабую бета-активность. Разные изотопы полония имеют исторические названия, принятые еще в начале 20 в., когда их получали в результате цепочки распадов из «родительского элемента»: RaF (210 Po), AcC" (211 Po), ThC" (212 Po), RaC" (214 Po), AcA (215 Po), ThA (216 Po), RaA (218 Po).

Полоний-210 синтезируют путем облучения нейтронами природного висмута (он содержит только 208 Bi) в ядерных реакторах (промежуточно образуется бета-активный изотоп висмута-210): 208 Bi + n→210 Bi → 210 Po + e. При облучении висмута ускоренными протонами образуется полоний-208, его отделяют от висмута возгонкой в вакууме – как это делала М.Кюри. В СССР методику выделения полония разработала Зинаида Васильевна Ершова (1905–1995). В 1937 она была командирована в Париж в Институт радия в лабораторию М.Кюри (руководимую в то время Ирэн Жолио-Кюри). В результате этой командировки коллеги стали называть ее «русской мадам Кюри». Под научным руководством З.В.Ершовой в стране было создано постоянно действующее, экологически чистое производство полония, что позволило реализовать отечественную программу запуска луноходов, в которых полоний использовали в качестве источника тепла.

Долгоживущие изотопы полония пока не получили заметного практического применения из-за сложности их синтеза. Для их получения можно использовать ядерные реакции

207 Pb + 4 He ® 208 Po + 3n,

208 Bi + 1 H ® 208 Po + 2n,

208 Bi + 2 D ® 208 Po + 3n,

208 Bi + 2 D ® 208 Po + 2n,

где 4 Не – альфа-частицы, 1 Н – ускоренные протоны, 2 D – ускоренные дейтроны (ядра дейтерия).

Свойства полония. Уже теллур частично проявляет металлические свойства, полоний же – мягкий серебристо-белый металл. Из-за сильной радиоактивности светится в темноте и сильно нагревается, поэтому нужен непрерывный отвод тепла. Температура плавления полония 254° С (чуть выше, чем у олова), температура кипения 962° С, поэтому уже при небольшом нагревании полоний возгоняется. Плотность полония почти такая же, как у меди – 9,4 г/см3. В химических исследованиях применяется только полоний-210, более долгоживущие изотопы практически не используются ввиду трудности их получения при одинаковых химических свойствах.

Химические свойства металлического полония близки к свойствам его ближайшего аналога – теллура, он проявляет степени окисления –2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании до 250° С) с образованием красного диоксида РоО2 (при охлаждении он становится желтым в результате перестройки кристаллической решетки). Сероводород из растворов солей полония осаждает черный сульфид PoS.

Сильная радиоактивность полония отражается на свойствах его соединений. Так, в разбавленной соляной кислоте полоний медленно растворяется с образованием розовых растворов (цвет ионов Ро2+):

Po + 2HCl ® PoCl2 + H2 ,

однако под действием собственной радиации дихлорид превращается в желтый PoCl4. Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет:

Po + 8HNO3 → Po(NO3)4 + 4NO2 + 4H2 O

С неметаллами VI группы полоний роднит реакция с водородом с образованием летучего гидрида РоН2 (т.пл. –35° С, т.кип. +35° С, легко разлагается), реакция с металлами (при нагревании) с образованием твердых полонидов черного цвета (Na2 Po, MgPo, CaPo, ZnPo, HgPo, PtPo и др.) и реакция с расплавленными щелочами с образованием полонидов:

3Po + 6NaOH ® 2Na2 Po + Na2 PoO3 + H2 O.

С хлором полоний реагирует при нагревании с образованием ярко-желтых кристаллов PoCl4, с бромом получаются красные кристаллы PoBr4, с иодом уже при 40° С полоний реагирует с образованием черного летучего иодида PoI4. Известен и белый тетрафторид полония PoF4. При нагревании тетрагалогениды разлагаются с образованием более стабильных дигалогенидов:

PoCl4 ® PoCl2 + Cl2 .

В растворах полоний существует в виде катионов Ро2+, Ро4+, анионов РоО32–, РоО42–, также разнообразных комплексных ионов, например, PoCl62–.

Применение полония. Полоний-210 испускает альфа-лучи с энергией 5,3 МэВ, которые в твердом веществе тормозятся, проходя всего тысячные доли миллиметра и отдавая при этом свою энергию. Время его жизни позволяет использовать полоний как источник энергии в атомных батареях космических кораблей: для получения мощности 1 кВт достаточно всего 7,5 г полония. В этом отношении он превосходит другие компактные «атомные» источники энергии. Такой источник энергии работал, например, на «Луноходе-2», обогревая аппаратуру во время долгой лунной ночи. Конечно, мощность полониевых источников энергии со временем убывает – вдвое каждые 4,5 месяца, однако более долгоживущие изотопы полония слишком дороги. Полоний удобно применять и для исследования воздействия альфа-излучения на различные вещества. Как альфа-излучатель, полоний в смеси с бериллием применяют для изготовления компактных источников нейтронов:

9 Be + 4 He ® 12 C + n.

Вместо бериллия в таких источниках можно использовать бор. Сообщалось, что в 2004 инспекторы международного агентства по атомной энергии (МАГАТЭ) обнаружили в Иране программу по производству полония. Это привело к подозрению, что он может быть использован в бериллиевом источнике для «запуска» с помощью нейтронов цепной ядерной реакции в уране, приводящей к ядерному взрыву.

Полоний при попадании в организм можно считать одним из самых ядовитых веществ: для 210 Ро предельно допустимое содержание в воздухе составляет всего 40 миллиардных долей микрограмма в 1 м3 воздуха, т.е. полоний в 4 триллиона раз токсичнее синильной кислоты. Вред наносят испускаемые полонием альфа-частицы (и в меньшей мере также гамма-лучи), которые разрушают ткани и вызывают злокачественные опухоли. Атомы полония могут образоваться в легких человека в результате распада в них газообразного радона. Кроме того, металлический полоний способен легко образовывать мельчайшие частицы аэрозолей. Поэтому все работы с полонием проводят дистанционно в герметичных боксах.

Открытие полония. Существование элемента с порядковым номером 84 было предсказано Д.И.Менделеевым в 1889 – он назвал его двителлуром (на санскрите – «второй» теллур) и предположил, что его атомная масса будет близка к 212. Конечно, Менделеев не мог предвидеть, что этот элемент окажется неустойчивым. Полоний – первый радиоактивный элемент, открытый в 1898 супругами Кюри в поисках источника сильной радиоактивности некоторых минералов. Когда оказалось, что урановая смоляная руда излучает сильнее, чем чистый уран, Мария Кюри решила выделить из этого соединения химическим путем новый радиоактивный химический элемент. До этого было известно только два слабо радиоактивных химических элемента – уран и торий. Кюри начала с традиционного качественного химического анализа минерала по стандартной схеме, которая была предложена немецким химиком-аналитиком К.Р.Фрезениусом (1818–1897) еще в 1841 и по которой многие поколения студентов в течение почти полутора веков определяли катионы так называемым «сероводородным методом». Вначале у нее было около 100 г минерала; затем американские геологи подарили Пьеру Кюри еще 500 г. Проводя систематический анализ, М.Кюри каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного электрометра, изобретенного ее мужем. Неактивные фракции отбрасывались, активные анализировались дальше. Ей помогал один из руководителей химического практикума в Школе физики и промышленной химии Густав Бемон.

Прежде всего, Кюри растворила минерал в азотной кислоте, выпарила раствор досуха, остаток растворила в воде и пропустила через раствор ток сероводорода. При этом выпал осадок сульфидов металлов; в соответствии с методикой Фрезениуса, этот осадок мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и ряда других металлов. Осадок был радиоактивным, несмотря на то, что уран и торий остались в растворе. Она обработала черный осадок сульфидом аммония, чтобы отделить мышьяк и сурьму – они в этих условиях образуют растворимые тиосоли, например, (NH4)3 AsS4 и (NH4)3 SbS3. Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди.

Не растворившуюся в сульфиде аммония часть осадка Кюри снова растворила в азотной кислоте, добавила к раствору серную кислоту и выпарила его на пламени горелки до появления густых белых паров SO3. В этих условиях летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты. После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца PbSO4 – радиоактивности в нем не было. Осадок она выбросила, а к отфильтрованному раствору добавила крепкий раствор аммиака. При этом снова выпал осадок, на этот раз – белого цвета; он содержал смесь основного сульфата висмута (BiO)2 SO4 и гидроксида висмута Bi(OH)3. В растворе же остался комплексный аммиакат меди SO4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным. Поскольку свинец и медь были уже отделены, в белом осадке был висмут и примесь нового элемента.

Кюри снова перевела белый осадок в темно-коричневый сульфид Bi2 S3, высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685° С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы. Пленка была радиоактивной и, очевидно, содержала новый химический элемент – аналог висмута в периодической таблице. Это был полоний – первый после урана и тория открытый радиоактивный элемент, вписанный в периодическую таблицу (в том же 1898 году были открыты радий, а также группа благородных газов – неон, криптон и ксенон). Как потом выяснилось, полоний при нагревании легко возгоняется – его летучесть примерно такая же, как у цинка.

Супруги Кюри не спешили назвать черный налет на стекле новым элементом. Одной радиоактивности было мало. Коллега и друг Кюри французский химик Эжен Анатоль Демарсе (1852–1903), специалист в области спектрального анализа (в 1901 он открыл европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии нового элемента. Спектральный анализ – один из самых чувствительных методов, позволяющий обнаруживать многие вещества в микроскопических, невидимых глазом количествах. Тем не менее, в статье, опубликованной 18 июля 1898 супруги Кюри написали: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута. Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Polonia на латыни – Польша). Это единственный случай, когда еще не идентифицированный новый химический элемент уже получил название. Однако получить весовые количества полония не удалось – его в урановой руде было слишком мало (позднее полоний был получен искусственно). И прославил супругов Кюри не этот элемент, а радий.

Селен и теллур находятся в VI группе периодической системы и являются аналогами серы. На внешнем электронном уровне у селена и теллура находятся по 6 электронов: Se 4s 2 4p 4 ; Te 5s 2 5p 4 , поэтому они проявляют степени окисления IV, VI и -II. Как и в любой группе периодической системы по мере роста атомной массы элемента, кислотные свойства элемента ослабевают, а основные возрастают, поэтому у теллура проявляется целый ряд основных (металлических свойств) и не удивительно, что первооткрыватели приняли его за металл.

Для селена характерен полиморфизм, существуют 3 кристаллические и 2 аморфные модификации.

Стекловидный селен получается быстрым охлажденным расплавленного селена, состоит из кольцевых молекул Se 8 и колец до 1000 атомов.

Красный аморфный селен образуется, если быстро охлаждать пары Se, в основном состоит из неправильно ориентированных молекул Se 8 , он растворяется в СS 2 при кристаллизации получают две кристаллические модификации:

t пл 170 0 С t пл 180 0 C

медленной быстрой

построенны из молекул Se 8 .

Наиболее устойчив серый гексагональный селен , состоящий из бесконечных цепей атомов селена. При нагревании все модификации переходят в последнюю. Это единственная полупроводниковая модификация. Она имеет: t пл 221 0 С и t кип 685 0 С. В парах наряду с Se 8 присутствуют и молекулы с меньшим числом атомов вплоть до Se 2 .

У теллура все более просто - наиболее устойчив гексагональный теллур, с t пл 452 0 С и t кип 993 0 С. Аморфный теллур – это мелкодисперсный гексагональный теллур.

Селен и теллур устойчивы на воздухе, при нагревании горят, образуя диоксиды SeO 2 и TeO 2 . При комнатной температуре не реагируют с водой.

При нагревании аморфного селена до t 60 0 С, начинает реагировать с водой:

3Se + 3Н 2 О = 2Н 2 Se + Н 2 SeО 3 (17)

Teллур менее активен и реагирует с водой выше 100 0 С. Со щелочами реагируют при более мягких условиях, образуя:

3Se + 6NaOH = 2Na 2 Se + Na 2 SeO 3 + 3H 2 O (18)

3Te + 6NaOH = 2Na 2 Te + Na 2 TeO 3 + 3H 2 O (19)

C кислотами (НСl и разбавленой H 2 SO 4) не реагируют, разбавленная HNO 3 окисляет их до H 2 SeO 3 ; H 2 TeO 3 , если кислота концентрированная, то она окисляет теллур до основного нитрата Te 2 O 3 (OH)NO 3 .

Концентрированная H 2 SO 4 растворяет селен и теллур, образуя

Se 8 (HSO 4) 2 – зеленые H 2 SeO 3

Te 4 (HSO 4) 2 – красные Te 2 O 3 SO 4

½ растворы

малоустойчивы

выделяются Se и Te

Для Se как и для S характерны реакции присоединения:

Na 2 S + 4Se = Na 2 SSe 4 (наиболее устойчивы) (20)

Na 2 S + 2Тe = Na 2 SТe 2 (наиболее устойчивы) (21)

в общем случае Na 2 SЭ n , где Э = Se, Te.

Na 2 SO 3 + Se Na 2 SeSO 3 (22)

селеносульфат

Для теллура такая реакция происходит только в автоклавах.

Se + KCN = KSeCN (для теллура неизвестна) (23)

С водородом селен взаимодействует при температуре 200 0 С:

Se + H 2 = H 2 Se (24)

Для теллура реакция протекает с трудом и выход теллуроводорода мал.

Селен и теллур взаимодействуют с большинством металлов. В соединениях для селена и теллура характерны степени окисления -2, +4, известны и +6.

Соединения с кислородом.Диоксиды. SeO 2 – белый, t возг. – 337 0 С, растворяется в воде, образуя H 2 SeO 3 – нестойкая, при температуре 72 0 С разлагается по перетектической реакции.

ТеО 2 – более тугоплавок, t пл. – 733 0 С, t кип. – 1260 0 С, не летуч, мало растворим в воде, легко растворяется в щелочах, минимум растворимости приходится на рН ~ 4, из раствора выделяется осадок H 2 TeO 3 , нестойка и при высушивании распадается.

Триоксиды. Высшие оксиды получаются при действии сильных окислителей.

SeO 3 (напоминает SO 3) реагирует с водой, образуя H 2 SeO 4 , t пл. ~ 60 0 С, сильный окислитель, растворяет Au:

2Au + 6H 2 SeO 4 = Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O (25)

в смеси с НCl растворяет Pt.

ТeO 3 – малоактивное вещество, существует в аморфной и кристаллической модификациях. Аморфный триоксид при длительном воздействии горячей воды гидратируется, переходя в орто-теллуровую кислоту H 6 TeO 6 . Растворяется в концентрированных растворах щелочей при нагревании, образуя теллураты.

H 2 TeO 4 имеет три разновидности: орто-теллуровая кислота H 6 TeO 6 хорошо растворима в H 2 O, ее растворы не дают кислую реакцию, очень слабая кислота, при обезвоживании получается полиметателлуровая кислота (H 2 TeO 4) n нерастворимая в воде. Аллотеллуровая кислота получается нагреванием орто-теллуровой кислоты в запаянной ампуле, смешивается с водой в любых отношениях и имеет кислый характер. Является промежуточной, в цепи 6 – 10 молекул, нестойкая, при комнатной температуре переходит в орто-теллуровую кислоту, а при нагревании на воздухе быстро превращается в H 2 TeO 4 .

Соли. Для селенатов соли тяжелых металлов хорошо растворимы в воде, мало растворимы селенаты ЩЗМ, свинца и в отличие от сульфатов, Ag и Tl. При нагревании образуют селениты (отличие от сульфатов). Селениты более устойчивы, чем сульфиты, их можно расплавить в отличие от сульфитов.

Теллураты Na 2 H 4 TeO 6 – ортотеллурат существует в двух модификациях, полученный при низких температурах, растворим в воде, при высоких – не растворим. При обезвоживании получается Na 2 TeO 4 не растворимый в воде. Малой растворимостью отличаются теллураты тяжелых и ЩЗМ. В отличие от теллурата, теллурит натрия растворим в воде.

Гидриды. Н 2 Se и Н 2 Тe газы, растворяются в воде и дают более сильные кислоты, чем H 2 S. При нейтрализации щелочами образуют соли, аналогичные Na 2 S. Для теллуридов и селенидов, как и для Na 2 S, характерны реакции присоединения:

Na 2 Se + Se = Na 2 Se 2 (26)

Na 2 Se + nS = Na 2 SeS n (27)

В общем случае образуются Na 2 ЭS 3 и Na 2 ЭS 4 , где Э – селен и теллур.

Хлориды. Если для серы наиболее устойчив S 2 Cl 2 , то для селена подобное соединение известно, однако наиболее устойчив SeCl 4 , для теллура ТeCl 4 . При растворении в воде SeCl 4 гидролизируется:

SeCl 4 + 3H 2 O = 4НCl + H 2 SeO 3 (28)

ТeCl 4 растворяется без заметного гидролиза.

Для ТeCl 4 известны комплексы: K 2 TeCl 6 и KTeCl 5 , с хлоридом алюминия образует катионные комплексы + - . В некоторых случаях образует комплексы и селен, но для него известны лишь гексахлорселенаты: M 2 SeCl 6 .

При нагревании возгоняются и диссоциируют:

SeCl 4 = SeCl 2 + Cl 2 (29)

при конденсации диспропорционируют:

2ТeCl 2 = Те + TeCl 4 (30)

Известны фториды, бромиды, иодиды образуются только у теллура.

Сульфиды. При сплавлении с серой соединений не образуется. При действии H 2 S на соли селена и теллура можно осадить TeS 2 и смесь SeS 2 и SeS (считают, что это смесь S и Se).

Синтезом, путем замещения в молекуле S 8 серы на селен, получены Se 4 S 4 , Se 3 S 5 , Se 2 S 6 , SeS 7 , замещение происходит через один атом серы.

Трансаргоноидные оксисоединения серы устойчивее соответствующих соединений хлора, а соединения фосфора еще устойчивее. Хлорная кислота и перхлораты являются сильными окислителями, тогда как серная кислота и сульфаты слабые окислители, а фосфорная кислота и фосфаты еще слабее. Это различие в свойствах соответствует значениям электроотрицательности х = 3 для Сl, 2,5 для S, 2,1 для Р, причем Δх (относительно кислорода) равно 0,5 для Сl, 1,0 для S, 1,4 для Р. Приведенные ниже характерные значения теплот реакции отражают увеличение значений Δх :

НСl (г.) + 2O 2 (г.) → НСlO 4 (ж.) + 8 кДж·моль -1

H 2 S (г.) + 2O 2 (г.) → H 2 SO 4 (ж.) + 790 кДж·моль -1

Н 3 Р (г.) + 2O 2 (г.) → Н 3 РO 4 (ж.) + 1250 кДж·моль -1

Устойчивым соединениям серы, селена и теллура соответствуют несколько значений степени окисления от -2 до +6, как показано на прилагаемой схеме:

6 SO 3 , H 2 SO 4 , SF 6 H 2 SeO 4 , SeF 6 TeO 3 , Te(OH) 6 , TeF 6

4 SO 2 , H 2 SO 3 SeO 2 , H 2 SeO 3 TeO 2

0 S 8 , S 2 Se Te

2 H 2 S, S 2- H 2 Se H 2 Te

Окислы серы

Нормальновалентная окись серы (моноксид) SО значительно менее устойчива, чем трансаргоноидные окислы SO 2 и SO 3 . Теплоты их образования имеют следующие значения:

1/8S 8 (к.) + 1/2O 2 (г.) → SО (г.) - 7 кДж·моль -1

1/8S 8 (к.) + O 2 (г.) → SО 2 (г.) + 297 кДж·моль -1

1/8S 8 (к.) + 3/2O 2 (г.) → SО 3 (г.) + 396 кДж·моль -1

Из первых двух уравнений следует, что разложение окиси серы на двуокись серы и серу сопровождается выделением большого количества тепла

2SО (г.) → 1/8S 8 (к.) + SО 2 (г.) + 311 кДж·моль -1

Поэтому не удивительно, что окись серы неизвестна как устойчивое соединение, а существует только в виде чрезвычайно реакционноспособных молекул в очень разреженном газообразном состоянии или в замороженных матрицах. Этот окисел имеет структуру

с двумя электронами, имеющими параллельные спины, и напоминает молекулы О 2 и S 2 .

Двуокись (диоксид) серы SО 2 образуется при горении серы или сульфидов, например пирита (FeS 2)

S + O 2 → SO 2

FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

Это бесцветный газ с характерным резким запахом. Температуры плавления и кипения двуокиси серы -75 и -10 °С соответственно.

В лабораторных условиях двуокись серы обычно получают действием сильной кислоты на твердый кислый сульфит натрия

Н 2 SO 4 + NaHSO 3 → NaНSO 4 + Н 2 O + SO 2

Ее можно очистить и осушить, барботируя через концентрированную серную кислоту. Двуокись серы имеет следующую электронную структуру:

В этой структуре использована одна 3d -орбиталь, а также 3s -орбиталь и три 3p -орбитали. Экспериментально установленная длина связи сера- кислород равна 143 пм; это несколько меньше значения 149 пм, которого можно было бы ожидать для двойной связи. Угол О-S-О равен 119,5°.

Большие количества двуокиси серы идут на производство серной кислоты, сернистой кислоты и сульфитов. SO 2 убивает грибки и бактерии и находит применение при консервировании и сушке чернослива, урюка и других фруктов. Раствор кислого сульфита кальция Са(НSO 3) 2 , получаемый реакцией двуокиси серы с гидроокисью кальция, используют в производстве бумажной пульпы из древесины. Он растворяет лигнин - вещество, скрепляющее целлюлозные волокна, и освобождает эти волокна, которые затем перерабатывают в бумагу.

Трехокись (триоксид) серы SO 3 образуется в очень небольших количествах при горении серы на воздухе. Обычно ее получают окислением двуокиси серы воздухом в присутствии катализатора. Реакция образования этого соединения из простых веществ экзотермична, однако менее экзотермична (считая на атом кислорода), чем реакция образования двуокиси серы. Особенность равновесия

SO 2 (г.) + 1/2O 2 (г.) → SO 3 (г.)

заключается в том, что удовлетворительный выход SO 3 можно получить при низких температурах; реакция протекает почти полностью. Однако при низких температурах скорость реакции настолько мала, что прямое соединение реагирующих веществ нельзя положить в основу промышленного процесса. При высоких температурах, когда достигается удовлетворительная скорость реакции, выход низок вследствие неблагоприятного положения равновесия.

Решением этой проблемы явилось открытие соответствующих катализаторов (платина, пятиокись ванадия), которые ускоряют реакцию, не влияя на ее равновесие. Каталитическая реакция протекает не в газовой смеси, а на поверхности катализатора при соприкосновении с ней молекул. На практике двуокись серы, получаемую при сжигании серы или пирита, смешивают с воздухом и пропускают над катализатором при температуре 400-450°С. В этих условиях примерно 99% двуокиси серы превращается в трехокись серы. Этот метод используют главным образом при производстве серной кислоты.

Трехокись серы представляет собой газ, обладающий сильным коррозионным действием; он энергично соединяется с водой, давая серную кислоту

SO 3 (г.) + Н 2 O (ж.) → Н 2 SO 4 (ж.) + 130 кДж·моль -1

Рис. 8.3. Трехокись серы и некоторые кислородные кислоты серы.

Трехокись серы легко растворяется в серной кислоте с образованием олеума , или дымящей серной кислоты , состоящей в основном из дисерной кислоты Н 2 S 2 O 7 (называемой также пиросерной кислотой)

SO 3 + Н 2 SO 4 ⇔ Н 2 S 2 O 7

При 44,5°С трехокись серы конденсируется в бесцветную жидкость, отвердевающую при 16,8°С с образованием прозрачных кристаллов. Это вещество полиморфно, причем образующиеся при 16,8°С кристаллы являются неустойчивой формой (α-форма). Устойчивая форма - шелковистые кристаллы, похожие на асбест, которые образуются при непродолжительном выдерживании альфа-кристаллов или жидкости в присутствии следов влаги (рис. 8.3). Существует также несколько других форм этого вещества, однако они трудно поддаются изучению вследствие крайне медленного превращения одной формы в другую. При температуре выше 50°С кристаллы, похожие на асбест, медленно испаряются, образуя пары SO 3 .

Молекулы трехокиси серы в газовой фазе, в жидкости и в альфа-кристаллах обладают электронной структурой

Молекула имеет плоское строение с такой же длиной связей (143 пм), как и в молекуле двуокиси серы.

Свойства трехокиси серы в значительной степени можно объяснить меньшей устойчивостью двойной связи сера - кислород по сравнению с двумя одинарными связями между ними. Так, в результате реакции с водой одна двойная связь в трехокиси серы заменяется на две одинарные связи в образующейся серной кислоте

О возросшей устойчивости продукта свидетельствует большое количество теплоты, выделяющейся при реакции.

Сернистая кислота

Раствор сернистой кислоты Н 2 SO 3 получают растворением двуокиси серы в воде. Как сернистая кислота, так и ее соли, сульфиты, являются сильными восстановителями. Они образуют серную кислоту Н 2 SO 4 и сульфаты при окислении кислородом, галогенами, перекисью водорода и подобными им окислителями.

Сернистая кислота имеет структуру

Серная кислота и сульфаты

Серная кислота Н 2 SO 4 - один из самых важных химических продуктов, находящих применение в химической промышленности и связанных с ней отраслях. Это тяжелая маслянистая жидкость (плотность 1,838 г·см -3), слегка дымящая на воздухе вследствие выделения следов трехокиси серы, которые затем, соединяясь с парами воды, образуют капельки серной кислоты. Чистая серная кислота при нагревании дает пар, богатый трехокисью серы, а затем при 338°С кипит, сохраняя постоянный состав (98% Н 2 SO 4 и 2% Н 2 O). Это и есть обычная промышленная «концентрированная серная кислота».

Концентрированная серная кислота оказывает сильное коррозионное действие. Она жадно соединяется с водой; смешивание с водой сопровождается выделением большого количества тепла в результате образования иона гидроксония

Н 2 SO 4 + 2Н 2 O → 2Н 3 O + + SO 4 2-

Для разбавления концентрированной серной кислоты ее следует тонкой струей вливать в воду , перемешивая при этом раствор; воду нельзя приливать к кислоте , так как это вызовет вскипание и сильное разбрызгивание кислоты. Разбавленная кислота занимает меньший объем, чем ее составляющие, причем эффект сокращения объема максимален при соотношении Н 2 SO 4: Н 2 O =1: 2 [(Н 3 O +) 2 (SO 4) 2- ].

Химические свойства и применение серной кислоты

Применение серной кислоты определяется ее химическими свойствами - ее используют как кислоту, в качестве обезвоживающего средства и окислителя.

Серная кислота имеет высокую температуру кипения (330°С), что позволяет применять ее для обработки солей более летучих кислот с целью получения этих кислот. Азотную кислоту, например, можно получить нагреванием нитрата натрия с серной кислотой

NaNO 3 + Н 2 SO 4 → NaHSO 4 + HNO 3

Азотная кислота отгоняется при 86°С. Серную кислоту применяют также для производства растворимых фосфатных удобрений, сульфата аммония, используемого в качестве удобрения, других сульфатов, а также многих химикатов и лекарственных препаратов. Сталь обычно очищают от ржавчины погружением в ванну с серной кислотой («травлением») перед покрытием цинком, оловом или эмалью. Серная кислота служит электролитом в обычных свинцовых аккумуляторах.

Серная кислота обладает настолько сильной способностью поглощать воду, что ее можно использовать в качестве эффективного обезвоживающего средства. Газы, не реагирующие с серной кислотой, можно осушать, пропуская их через нее. Дегидратирующая сила концентрированой серной кислоты настолько велика, что органические соединения, подобные сахару, под ее действием теряют водород и кислород в виде воды

$C_{12}H_{22}O_{11} \rightarrow 12C + 11H_{2}O$

Сахар (сахароза) H 2 SO 4

Многие взрывчатые вещества, например нитроглицерин, получают реакцией между органическими соединениями и азотной кислотой, в результате чего образуются взрывчатое вещество и вода, например

С 3 Н 5 (ОН) 3 + 3HNO 3 → С 3 Н 5 (NO 3) 3 + 3Н 2 O

Глицерин H 2 SO 4 Нитроглицерин

Чтобы заставить эти обратимые реакции идти слева направо, азотную кислоту смешивают с серной кислотой, которая благодаря своему обезвоживающему действию способствует образованию продуктов реакции. (Два других примера приведены в разд. 7.7.)

Горячая концентрированная серная кислота является сильным окислителем; продуктом ее восстановления является двуокись серы. Серная кислота растворяет медь и способна даже окислять углерод

Сu + 2H 2 SO 4 → СuSO 4 + 2Н 2 О + SO 2

С + 2H 2 SO 4 → СO 2 + 2Н 2 О + 2SO 2

Растворение меди в горячей концентрированной серной кислоте иллюстрирует общую реакцию - растворение неактивного металла в кислоте при одновременном действии окислителя . Активные металлы окисляются до катионов под действием иона водорода, который при этом восстанавливается до элементарного водорода, например

Zn + 2Н + → Zn 2+ + Н 2 (г.)

Подобная реакция с медью не идет. Однако медь можно окислить до иона Сu 2+ действием сильного окислителя, например хлора или азотной кислоты, или же, как показано выше, горячей концентрированной серной кислотой.

Сульфаты

Серная кислота соединяется с основаниями, образуя средние сульфаты, например К 2 SO 4 (сульфат калия), и кислые сульфаты (иногда называемые бисульфатами), например кислый сульфат калия КНSO 4 .

Малорастворимые сульфаты встречаются в виде минералов, ю числу которых относятся СаSO 4 ·2Н 2 O (гипс), SrSO 4 , ВаSO 4 (барит) и РbSO 4 . Наименее растворим из всех сульфатов сульфат бария; поэтому его образование в виде белого осадка служит качественной реакцией на сульфат-ион.

К числу наиболее распространенных растворимых сульфатов относятся: Na 2 SO 4 ·10Н 2 O, (NH 4) 2 SO 4 , MgSO 4 ·7Н 2 O (горькая соль), СuSO 4 ·5Н 2 O (медный купорос), FeSO 4 ·7Н 2 O, (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O (хорошо кристаллизующаяся и легко поддающаяся очистке соль, применяемая в аналитической химии для приготовления стандартных растворов двухвалентного железа), ZnSO 4 ·7Н 2 O, КАl(SO 4) 2 ·12Н 2 O (квасцы), (NH 4)Аl(SO 4) 2 ·12Н 2 O (алюминиево-аммонийные квасцы) и КСr(SO 4) 2 ·12Н 2 O (хромовые квасцы).

Тио- или сульфокислоты

Тиосульфат натрия Na 2 S 2 O 3 ·5Н 2 O (неправильно называемый «гипосульфитом натрия»)-вещество, применяемое в фотографии. Его получают кипячением раствора сульфита натрия с чистой серой

SO 3 2- + S → S 2 O 3 2-

Бисульфит-ион Тиосульфат-ион

Тиосерная кислота Н 2 S 2 O 3 неустойчива; при обработке тиосульфата кислотой образуются двуокись серы и сера.

Структура иона тиосульфата S 2 O 3 2- интересна тем, что два атома серы не эквивалентны. Этот ион представляет собой ион сульфата SO 4 2- , в котором один из атомов кислорода замещен атомом серы (рис. 8.4). Центральному атому серы можно приписать степень окисления + 6, а присоединенному атому серы степень окисления -2.

Тиосульфат-ион легко окисляется, особенно иодом, до тетратионат- иона S 4 O 6 2-

2S 2 O 3 2- → S 4 O 6 2- +2е

2S 2 O 3 2- +I 2 → S 4 O 6 2- + 2I -

Эту реакцию между тиосульфат-ионом и иодом широко используют в количественном анализе веществ, обладающих окислительными или восстановительными свойствами.

Рис. 8.4. Тиосульфат- и тетратионат-ионы.

Селен и теллур

Трансаргоноидные соединения селена очень напоминают соответствующие соединения серы. Селенаты, соли селеновой кислоты H 2 SeO 4 очень похожи на сульфаты. Теллуровая же кислота имеет формулу Те(ОН) 6 , причем большой центральный атом имеет координационное число не 4, а 6, так же как атом иода в молекуле Н 5 IO 6 .

ЭЛЕМЕНТЫ VIА ГРУППЫ

Общая характеристика

Кислород, дикислород, трикислород

Соединения кислорода

Сера

Сероводород. Сульфиды

Кислородные соединения серы

Серная кислота

Другие соединения серы

Селен, теллур, полоний и их соединения

ОБЩАЯ ХАРАКТЕРИСТИКА

Элементы и их символы: кислород О, сера S, селен Sе, теллур Те, полоний Ро. Групповое название элементов VIА группы – халькогены.

Степень окисления. Для кислорода характерна степень окисления (-2), для остальных элементов (кроме полония) – (+6), (+4) и (-2), полоний в соединениях проявляет степень окисления (+4), (+2) и (-2). Устойчивость состояния окисления (+V1) понижается от S к Те, устойчи­вость состояния окисления (+4) повышается от S к Ро, а устойчивость состояния окисления (-2) понижается от О к Ро.

Свойства (табл. 1). Металлические свойства возрастают от кислорода к полонию. В целом элементы О и S – неметаллы; Sе и Те обнаруживают повышение металлического характера, например в свободном виде Sе суще­ствует в металлической и неметаллической модификациях, а Те – только в металлической, Ро – металл.

Гидроксиды элементов VIА группы в высшей степени окисления отве­чают кислотам Н 2 SО 4 , Н 2 SеО 4 (сильные кислоты) и Н 6 ТеО 6 (слабая кисло­та). Гидроксиды этих элементов в степени окисления (+4) соответствуют слабым кислотам SО 2 *nН 2 О, Н 2 SеО 3 и Н 2 ТеО 3 , сила которых понижается с увеличением порядкового номера кислотообразующего элемента, РоО(ОН) 2 – амфотерный гидроксид. По сравнению с элементами VА группы все указан­ные Гидроксиды более кислотные, а по сравнению с элементами VIIА груп­пы - более основные.

Устойчивость водородных соединений - халькогеноводородов Н 2 О, Н 2 S, Н 2 Sе, Н 2 Те и Н 2 Pо - уменьшается от О к Ро, кислотность их в водном растворе, напротив, в этом порядке увеличивается. Вода Н 2 О считается ней­тральной, сила Н 2 Те примерно соответствует силе ортофосфорной кислоты, Халькогеноводороды проявляют соответственно большие и меньшие кис­лотные свойства, чем водородные соединения элементов VА группы и галогеноводороды.

КИСЛОРОД, Дикислород, трикислород

Открытие. Кислород впервые получен в свободном виде при нагревании се­литры в 1770 г. (Шееле, Швеция) и в 1774 г. при разложении оксида НgО и свинцового сурика (Рb 2 II Рb IV)О 4 (Пристли, Англия). Роль кислорода в ре­акциях горения многих веществ на воздухе была объяснена в 1775 г. (Ла­вуазье, Франция), что подорвало устои теории флогистона, выдвинутой в 1697 г. (Шталь, Германия).

Распространение в природе. Кислород - самый распространенный элемент на Земле. Содержание его в земной коре составляет 55,1% ат. Свободный кислород находится в воздухе (»1,1*10 15 т) и в природных водах (биохи­мическая самоочистка речной и морской воды идет с потреблением кисло­рода). Связанный кислород содержится в воде, силикатах, кварце и других минералах, а также в живых организмах.

Состав атмосферного воздуха: Азот 78,09 % (об) 75,51 % (масс.); Кислород 20,95 23.15; Аргон 0,93 1.28; Диоксид углерода 0,03 0,046; Водяной пар (25 °С) <3 <0,27.

Плотность воздуха составляет 1,293 г/л при О °С и 101,33 кПа (1 атм). Воздушная оболочка Земли поглощает и нейтрализует вредное ультрафио­летовое излучение Солнца и предохраняет от перегрева земную поверхность.


Таблица 1.

Свойства халькогенов

Кислород О Сера S Селен Se Теллур Te Полоний Po
Порядковый номер элемента 8 16 34 52 84
Относительная атомная масса 15,999 32,067 78,96 127,60 208,982
Температура плавления °С -219 119 217 450 254
Температура кипения °С -183 445 685 1390 962
Плотность при 20 °С, г/см 3 1,27 (тв.) 2,1 4,8 (мет) 6,2 9,4
Степень окисления
+6

возрастание устойчивости.

+4

возрастание устойчивости ®

-2

возрастание устойчивости.

Гидроксиды элементов (+6) H 2 SO 4 H 2 SeO 4 H 6 TeO 6

Сильные кислоты

Слабая кислота
Гидроксиды элементов (+4) SО 2 *nН 2 О, Н 2 SеО 3 Н 2 ТеО 3 , РоО(ОН)

Слабые кислоты

Амфотерный гидр-д
Водородные соединения H 2 O H 2 S H 2 Se H 2 Te H 2 Po
нейтральная

Слабые кислоты

возрастание устойчивости.


Физиологическое действие. Все органические вещества - это соединения кислорода, поэтому кислород является жизненно важным элементом почти для всех живых организмов (исключение составляют анаэробные бактерии). Кислород поступает в кровь через легкие. В крови кислород слабо связывается с гемоглобином (хромо­фор красных кровяных телец) с образованием оксигемоглобина и в таком виде подводится к клеткам. Под действием ферментов кислород окисляет приносимый также кровью виноградный сахар (глюкозу), превращая его в диоксид углерода и воду; освобождаемая при этом энергия используется для протекания различных жизненных процессов (работа мускулов, нагре­вание тела и т. д.).


Аллотропные модификации. В свободном виде кислород образует две модификации: дикислород (обычный иислород) О 2 и трикислород (озон) О 3 .

Дикислород О 2

Строение. Строение молекулы О 2 , имеющей два неспаренных электрона, кор­ректно передается только в рамках метода молекулярных орбиталей. Традиционное изображение молекулы кислорода с двой­ной связью (О = О) не передает особенности ее строения и поэтому не вполне верно.

Получение.

1. Из воздуха путем фракционной конденсации и дистилля­ции (способ Линде), способ применяется в промышленности.

2. Нагревание кислородсодержащих веществ, а именно хлоратов в при­сутствии катализатора - пиролюзита МnО 2 (реакция 1), нитратов (реак­ция 2), перманганатов при умеренных или при очень высоких температурах (соответственно реакции 3 и 4), пероксидов (реакция 5):

2КС1O 3 = 2КС1 + 3О 2 (1)

2КNO 3 = 2КNO 2 + O 2 (2)

2КМnО 4 = К 2 МnО 4 + МnО 2 + О 2 (3)

4КМnО 4 = 2К 2 О + 4МnО 2 + ЗО 2 (4)

2ВаО 2 = 2ВаО + О 2 (5)

3. Каталитическое разложение пероксида водорода (катализатор - пиро­люзит - МnO 2):

2Н 2 О 2 = 2Н 2 O + О 2

4. Электролиз щелочных или сульфатных растворов с применением не­растворимых (платиновых) анодов, на которых происходит разрядка гидроксид-ионов или окисление воды:

4ОН - - = О 2 + 2Н 2 О; 2Н 2 О - 4е = О 2 + 4Н +

5. Взаимодействие пероксидов щелочных элементов с диоксидом углерода:

2Nа 2 О 2 + 2СО 2 = 2Nа 2 СО 3 + О 2

Эта реакция осуществляется в кислородных изолирующих приборах.

Физические свойства . Бесцветный газ, не имеющий вкуса и запаха. Умеренно растворим в воде, но несколько лучше, чем азот; в растворенном воздухе содержание кислорода составляет 36 % (об.). Жид­кий и твердый дикислород имеет светло-синюю окраску.

Химические свойства. При комнатной температуре относительно мало реакционноспособен, при высоких температурах вследствие ослабления связи кислород - кислород активность О 2 возрастает.

Химическое присоединение кислорода называется окислением ,оно бы­вает медленным и быстрым. Медленное окисление - это, например, процессы образования ржавчины на железных предметах, усвоения пищи организмом, гниения органических остатков, старения резины, отверждения масляных красок. Быстрое окисление, часто сопровождаемое появлением пламени,называется горением. В чистом (а также в жидком) кислороде вещества го­рят интенсивнее, чем в воздухе, например воспламеняется тлеющая на воздухе древесная лучина. При окислении веществ кислородом образуются оксиды, например: 2Н 2 S + 3О 2 = 2Н 2 О + 2SО 2 .

Обнаружение. По яркому возгоранию тлеющей лучины (при содержании кислорода более 30%); по коричневому окрашиванию щелочного раствора пирогаллола.

Применение. Кислород хранят и перевозят в стальных баллонах под из­быточным давлением 150 атм на вентиле баллона не должно быть жировой смазки. Кислород используют для сварки и резки металлов и в дыхательных аппаратах, как окислитель ракетных топлив и реагент во многих химико-технологических процессах. Обогащенный кислородом воздух применяется в различных металлургических методах, для газификации бу­рого угля под давлением и др.

Жидкий воздух. Получают по способу Линде, который заключается в сле­дующем. Воздух сжимают и выделяющуюся при этом теплоту отводят; при последующем расширении происходит охлаждение. Путем повторения такой операции с промежуточным охлаждением получают сжиженный воздух при температуре около -190 °С. Жидкий воздух имеет светло-синюю окраску. Его хранят в сосудах Дьюара, которые запрещено закрывать плотной проб­кой. Интенсивность окраски жидкого воздуха при хранении увеличивается, так как более летучий бесцветный азот испаряется. Смеси жидкого воздуха с активным углем, древесной мукой и другими дисперсными материалами взрывчаты.

Трикислород (озон) О 3

Получение. Озон образуется из обычного кислорода (в чистом виде или в воздухе) под действием тлеющего электрического разряда или ультрафиоле­тового излучения (3О 2 « 2О 3). Кислород, получаемый на аноде при электро­лизе разбавленной серной кислоты с применением высокой плотности электри­ческого тока, содержит значительные количества озона.

Свойства. Светло-синий газ с характерным «электрическим» запахом. Взрывается при нагревании. Очень сильный окислитель, но слабее, чем атом­ный кислород. С серебром образует черный пероксид серебра (точная фор­мула неизвестна), при контакте с эфиром или спиртом последние заго­раются.

Применение. Озон используют для обеззараживания питьевой воды, в ме­дицине как дезинфицирующее средство, для обезвреживания промышленных сточных вод.

Атмосферный озоновый слой. Встратосфере (»25 км над поверхностью Земли) озон образуется под действием солнечной радиации, и хотя его количество мало (по сравнению с кислородом воздуха), озона оказывается достаточно для поглощения ультрафиолетового излучения, опасного для всех живых организмов. Таким образом, озоновый слой в стратосфере обеспечивает нормальное развитие органической жизни на Земле.

СОЕДИНЕНИЯ КИСЛОРОДА

Оксиды

Получение.

1. Взаимодействие простых веществ с кислородом (окисление элементов в свободном виде), например, при их горении в атмосфере кис­лорода или на воздухе.

2. Прокаливание гидроксидов или гидратированных оксидов: Сu(ОН) 2 = СuО + Н 2 О.

3. Нагревание солей, разлагающихся с образованием летучих кислотных оксидов (карбонатов, сульфатов, сульфитов, нитратов и др.): СuСО 3 = СuО + СO 2 .

Свойства. Оксиды многих неметаллов, за исключением СО, NO, N 2 О, со­ответствуют кислотам. Они часто получаются в результате термического раз­ложения кислоты или образуют ее при взаимодействии с водой (кислотные оксиды): SO 3 + H 2 O = Н 2 SО 4 .

Оксиды металлов в высоких степенях окисления (+5) - (+7) также относятся к кислотным оксидам. Например, триоксид хрома при взаимодей­ствии с водой дает хромовую кислоту:

СrО 3 + Н 2 О = Н 2 СrО 4

Оксиды металлов в низких степенях окисления от (+1) до (+4) яв­ляются основными либо амфотерными оксидами, им соответствуют основные или амфотерные гидроксиды, например:

СаО + Н 2 О = Са(ОН) 2 ; А1 2 О 3 + 3Н 2 О = 2А1(ОН) 3 .

Большинство оксидов металлов в обычных условиях не реагируют с во­дой, и поэтому отвечающие им гидроксиды получают косвенным путем, на­пример через соли:

СuО + 2НС1 = СuС1 2 + Н 2 О, СuС1 2 + 2NaОН = Сu(ОН) 2 + 2NаС1.

Основные оксиды при взаимодействии с типичными кислотными оксидами и кислотами образуют соответствующие соли; так же протекают реакции между кислотными оксидами и типичными основными оксидами или осно­ваниями. Амфотерные оксиды и с кислотными, и с основными оксидами образуют соли.

Гидроксиды

Гидроксиды обязательно содержат группу -О-Н. В зависимости от того, связана ли гидроксигруппа с атомами металла или неметалла, гидроксиды будут обладать основными, кислотными или амфотерными свойствами.

Большинство гидроксидов металлов мало растворимо в воде и осаж­дается при их получении из водного раствора: СuSO 4 + 2NaОН = Сu(ОH) 2(т) + Nа 2 SО 4 .

Обычно при комнатной температуре гидроксиды выпадают в виде сли­зистых, хлопьевидных, часто окрашенных осадков, в которых содержание воды выше, чем это следует из стехиометрической формулы, поэтому им приписывается состав полигидрата оксида. Стехиометрический состав может достигаться при нагревании полигидратированного оксида, но обычно обра­зуются частично обезвоженные гидроксиды-оксиды типа Аl(ОН) или Тl(ОН) 2 .

Окраска малорастворимых гидроксидов:

белая: А1(ОН) 3 , АlO(ОН), Zn(ОН) 2 , Сd(ОН) 2 , Рb(ОН) 2 , Sn(ОН) 2 , Вi(ОН) 3 , ВЮ(ОН), Мg(ОН) 2 ;

светло-зеленая: Fе(ОН) 2 [на воздухе этот гидроксид ста­новится коричневым;

светло-коричневая: Мn(ОН) 2 ;

ярко-зеленая: Ni(ОН) 2 ;

серо-голубая: Сr(ОН) 3 ;

голубая : Сu(ОН) 2 ;

розовая: Со(ОН) 2 ;

Гидроксиды серебра (I) и ртути (II) очень неустойчивы и при комнатной температуре спонтанно распадаются на оксиды и воду.

Пероксиды

Пероксиды обязательно содержат кислородную цепь -О-О- (пероксогруппа), их можно рассматривать как производные пероксида водорода Н-О-О-Н. Важнейшими представителями являются пероксид натрия Nа 2 О 2 и пероксид бария ВаО 2: они содержат пероксид-ионы О*". Если в составе оксида нет цепи -О-О-, то такое соединение нельзя называть пероксидом, например РbО 2 (структурная формула О= Рb=О) представляет собой оксид свинца (IV). Органические пероксиды широко используются как катализаторы полимеризации.

Надпероксиды металлов содержат цепочечный ион О 2 - ; например, при сго­рании калия образуется надпероксид кадия КО 2 .

СЕРА

Элемент сера S в виде выделений вулканических источников из­вестен со II в. до н. э.

Распространение в природе. Сера встречается в свободном виде (само­родная сера) и в виде сульфидов и сульфатов образует много минералов. Входит в состав природного угля, нефти и белковых тел (особенно много серы содержится в кератине волос, перьев и шерсти).

Минералы: сульфиды (колчеданы - светлые с металлическим блеском; блески - темные с металлическим отливом; обманки - темные без металлического бле­ска или чаще светлые, прозрачные), пирит, серный колчедан, железный колчедан FeS 2 , молибденит, молибденовый блеск МоS 2 , халькопирит, медный колчедан FеСuS 2 , аргентит, серебряный блеск Аg 2 S, стибнит, сурьмяный блеск, серая сурьмяная руда Sb 2 S 3 , арсенопирит, миспикель, мышьяковый колчедан FеАsS, сфалерит, цинковая обманка ZnS, киноварь НgS, реальгар Аs 4 S 4 галенит, свинцовый блеск РbS, халькозин, медный блеск Сu 2 S.

Физиологическое действие. Сера - жизненно важный элемент, в связанном виде она содержится во всех высших организмах (составная часть белков).

Для людей свободная сера не ядовита, небольшие количества ее дей­ствуют как слабительное, мелкодисперсная сера раздражает кожу (на этом основано применение лекарственных серосодержащих мазей).

Получение.

1. Выплавление самородной серы из природных залежей, на­пример с помощью водяного пара, и очистка сырой серы перегонкой. При резком охлаждении пара серы получают сублимированную серу в виде мел­кого порошка («серный цвет»).

2. Выделение серы при десульфурации продуктов газификации угля (во­дяной, воздушный и светильный газы), например, под действием воздуха и катализатора - активного угля:

2Н 2 S + О 2 = 2Н 2 O +2S.

3. Выделение серы при неполном сгорании сероводорода (уравнение см. выше), при подкислении раствора тиосульфата натрия: Na 2 S 2 O 3 + 2НС1 = 2NaС1 + SО 2 + Н 2 О + S, и при перегонке раствора полисульфида аммония: (NH 4) 2 S 3 .

Аллотропные модификации. Сера в свободном виде состоит из молекул различной длины (S ¥ , S 12 , S 8 , S 6 , S 2 и др.), и эти молекулы могут упоря­дочиваться различными способами, поэтому существует несколько модифи­каций серы. При комнатной температуре сера находится в виде a-серы (ромбическая модификация), которая представляет собой желтые хрупкие кристаллы без цвета и запаха, не растворимые в воде, но легко растворимые в сероуглероде. Выше 96 °С происходит медленное превращение a-серы в b-серу (моноклинная модификация), которая представляет собой почти белые кристаллические пластинки. Температуры плавления a- и b-серы равны соответственно 118 и 119°С. При плавлении образуется желтая низковязкая l-сера, которая состоит, как и обе модификации твердой серы, из цикличе­ских молекул S 8 . При дальнейшем нагревании циклы S 8 переформировы­ваются в цепи разной длины. Модификация такого строения называется m-серой; это красно-коричневая и очень вязкая жидкость. При повышении температуры окраска становится темно-коричневой и вязкость жидкой серы снова понижается. Жидкая сера кипит при 444,6 °С. При вливании расплав­ленной серы в воду происходит переохлаждение расплава и образование желто-коричневой, резиноподобной, режущейся ножом пластической серы (смесь l- и m-серы), которая на воздухе за несколько минут становится жел­той, мутной и хрупкой.

Химические свойства. При нагревании на воздухе сера сгорает голубым пламенем до диоксида серы SО 2 (с примесью триоксида серы SO 3). При высоких температурах реагирует с металлами, давая соответствующие суль­фиды, и с водородом (и парафином), образуя сероводород Н 2 S. Сера рас­творяется в растворе сульфида аммония с образованием желто-красных полисульфид-ионов, при нагревании серы с раствором сульфита получается соответствующий тиосульфат, а при нагревании с раствором цианида - тиоцианат.

Применение. Сера используется для получения сероуглерода, серной кис­лоты, тиосульфата натрия, сернистых красителей, ультрамаринового синего, при вулканизации каучука, как средство для лечения кожных заболеваний, для защиты растений от мучнистой росы.

Серу вводят в пахотные земли в виде различных сульфатсодержащих удобрений (сульфат аммония, суперфосфат).

СЕРОВОДОРОД. СУЛЬФИДЫ

Сероводород (моносульфан) Н 2 S.

Распространение в природе. Сероводород содержится в серных минеральных источниках, вулканическом и природном газе, большие количества серово­дорода образуются при естественном гниении белковых веществ.

Физиологическое действие. Сероводород очень ядовит. Вдыхание воздуха, содержащего 0,08 % (об.) Н 2 S, в течение 5 – 10 мин приводит к смерти. Как и циановодород сероводород блокирует жизненно важные дыхательные фер­менты (цитохромы). Лабораторные работы с сероводородом следует прово­дить только в вытяжном шкафу.

Обнаружение. По черно-коричневому окрашиванию «свинцовой бумаги» - пропитанной раствором соли свинца (II) и высушенной фильтровальной бу­маги; по черному налету (образование Аg 2 S) на серебре.

Получение.

1. Промышленный способ - выделение из водяного, бытового, коксового и сырого синтезгаза с помощью растворов натриевых солей ами­нокислот, которые поглощают Н 2 S на холоду и выделяют при нагревании или с помощью глубокоохлажденного метанола, также хорошо поглощаю­щего Н 2 S.

2. Обработка сульфида железа (II) хлороводородной кислотой: FеS + 2НС1 = FеС1 2 + Н 2 S.

3. Нагревание серы с парафином.

4. Прямой синтез из водорода и серы (водород пропускают над расплавленной серой).

Последние три способа применяются в лабораторных условиях.

Свойства. Бесцветный газ с запахом гнилых яиц, т. кип. -61 °С. Горит голубым пламенем и при полном сгорании образует диоксид серы: 2Н 2 S + 3О 2 = 2Н 2 О + 2SО 2 .

При внесении в пламя холодных предметов (например, фарфоровых) они покрываются желтым налетом серы из-за неполного сгорания, что соответствует черной копоти при непол­ном сгорании углеводородов (метана, ацетилена).

Сероводород мало растворим в воде, при растворении образуется так называемая сероводородная вода, из которой на воздухе в результате мед­ленного окисления выпадает осадок серы. Сероводород - одна из самых слабых кислот в водном растворе.

Применение. Сероводород используют для получения серы и как реактив количественного анализа в неорганической химии.

Сульфиды

Сульфидами называются соли сероводорода. В более широком смысле это соединения электроположительных элементов с серой, имеющей, таким об­разом, отрицательную степень окисления (-2).

Сульфиды тяжелых металлов являются промышленно важными рудами; их путем обжига на воздухе переводят в оксиды: 2РbS + 3О 2 = 2РbО + 2SО 2 .

Сульфиды щелочных и щелочноземельных элементов, а также сульфид аммония, хорошо растворимы в воде. Остальные сульфиды выделяются в виде характерно окрашенных осадков при введении раствора сульфида аммония в растворы солей металлов, а практически нерастворимые сульфиды (обла­дающие чрезвычайно низкой растворимостью в воде) выпадают даже из кислых растворов солей при введении сероводорода: FеSO 4 + (NН 4) 2 S = FеS (т) + (NH 4) 2 SО 4 , 2ВiС1 3 + 3Н 2 S = Вi 2 S 3(т) + 6НС1.

Сульфиды, осаждаемые из кислых растворов сероводородом:

черные - НgS, Аg 2 S, РbS, СuS оранжевые - Sb 2 S 3 , Sb 2 S 5

коричневые - SnS, Вi 2 S 3 желтые - Аs 2 S 3 , Аs 2 S 5 , SnS 2 , СdS

Сульфиды, осаждаемые из аммиачных растворов под действием суль­фида аммония (NН 4) 2 S: черные - FеS, NiS, СоS, розовый - МnS, белый - ZnS.

КИСЛОРОДНЫЕ СОЕДИНЕНИЯ СЕРЫ

Диоксид серы SО 2

Распространение в природе. Диоксид серы содержится в вулканических газах и отходящих газах, выделяемых при сжигании природного угля.

Получение.

1. Сжигание серы или сероводорода.

2. Обработка сульфитов сильными кислотами: Na 2 SO 3 + 2HCl = 2NaCl + Н 2 О+ SO 2 .

3. Обжиг сульфидных руд, например пирита: 4FеS 2 + 11О 2 = 2Fе 2 О 3 + 8SО 2

4. Восстановительное термическое разложение минералов гипса СаSО 4 2Н 2 О или ангидрита СаSО 4 .

Последние два метода используются в промышленности.

Свойства. Бесцветный тяжелый газ с острым запахом, вызывающий ка­шель. Сжижается при -10 °С. Негорюч, очень легко растворяется в воде. В растворе SО 2 легко окисляется, например, перманганатом калия (быстро) или кислородом воздуха (медленно), до серной кислоты Н 2 SО 4 .

Диоксид серы действует как отбеливающий агент на многие красители; в отличие от необратимого действия белильной извести, обесцвечивание ди­оксидом серы часто обратимо, и окраска возвращается после промывки.

Применение. SО 2 - промежуточный продукт в производстве серной кис­лоты и других соединений серы. Используется для отбеливания бумаги, со­ломы и шерсти, при обработке винных бочек, для сульфохлорирования на­сыщенных углеводородов. Жидкий диоксид серы применяют для очистки нефти.

Сульфиты

При растворении диоксида серы в воде образуется кислотный полигидрат SО 2 *nН 2 О, который ранее изображали условной формулой Н 2 SО 3 (такие молекулы неизвестны) и называли сернистой кислотой. Полигидрат SО 2 *nН 2 О в водном растворе является кислотой средней силы; при нейтрализации этого раствора образуются сульфиты.

Общая формула средних сульфитов М I 2 SО 3 , кислых сульфитов (гидро­сульфитов) М I НSО 3 .

В воде растворимы только сульфиты щелочных элементов, при кипячении растворов этих сульфитов с серой они переходят в соответствующие тио­сульфата. Все сульфиты под действием сильных кислот разлагаются с вы­делением SO 2 .

К важнейшим сульфитам относятся сульфит натрия Nа 2 SО 3 и гидросуль­фит натрия NаНSО 3 . Раствор гидросульфита кальция Са(НSО 3) 2 , называемый «сульфитным щелоком», получают из карбоната кальция (из­вестняка), диоксида серы и воды, он служит средством для извлечения лиг­нина из древесины при получении целлюлозы.

Дисульфиты М I 2 S 2 О 6 - производные от неизвестной в свободном виде дисернистой кислоты Н 2 S 2 О 6 fd ; эти соли (ранее называвшиеся пиросульфитами или метабисульфитами) можно получить при нагревании гидросульфитов: 2KHSO 3 = K 2 S 2 O 5 + H 2 O.

Дисульфит калия К 2 S 2 О 5 широко используется в фотографических про­явителях и закрепителях.

Триоксид серы SО 3

Получение. Каталитическое окисление диоксида серы, отгонка из олеума, термическое разложение К 2 S 2 О 7 на К 2 SО 4 и SО 3 (лабораторный способ).

Свойства. Известны три модификации SО 3 . Наиболее устойчивая – a-SО 3 образуется в виде шелково-блестящих игл, которые на воздухе сильно пах­нут, т. пл. 40°С. Интенсивно реагируют с водой, давая серную кислоту. По­хожая на лед модификация – g-SО 3 имеет т. пл. 16,8°С и т. кип. 44,8 °С.

7. Серная кислота Н 2 SО 4

Получение. Выделение серной кислоты из сульфатов при помощи сильной кислоты с последующим выпариванием Н 2 SО 4 невозможно, так как серная кислота сама сильная и выше 300°С разлагается. Все промышленные методы ее синтеза основаны на получении диоксида серы SО 2 , окислении его в триоксид серы SО 3 и взаимодействии последнего с водой.

Первую стадию производства серной кислоты - получение диоксида Серы - можно вести тремя способами:

Наиболее распространен обжиг сульфидных руд, например пирита. Процесс проводят в трубчатых вращающихся или многоподовых печах, а также в печах с кипящим слоем. Технологические процессы цветной металлургии всегда со­провождаются получением Н 2 SО 4 , так как при обжиге сульфидных руд образуется диоксид серы.

Вторая стадия производства серной кислоты - окисление диоксида серы, этот процесс проводят контактным или нитрозным способом.

Контактным способом осуществляют приблизительно 80 % мирового производства серной кислоты. Способ известен с 1900 г. Продуктом является концентрированная Н 2 SО 4 .

Физические свойства. Бесцветная маслообразная жидкость без запаха, плотность 1,84 г/см 3 при 20 °С. При 338 °С закипает, образуя туман SО 3 .

При разбавлении ее водой происходит сильное разогревание (образова­ние гидратов, например Н 2 SО 4 *Н 2 O), что сопровождается разбрызгиванием жидкости.

Правило разбавления серной кислоты: следует вливать при перемешива­нии кислоту в воду, а не наоборот. Серная кислота очень гигроскопична и поэтому пригодна для осушки многих газов (но не аммиака!).

Химические свойства . Очень сильная двухосновная кислота, уже при уме­ренном разбавлении практически полностью диссоциирует на ионы Н + (точнее, Н 3 O +) и SO 4 2- :

Н 2 S0 4 + 2Н 2 0 = SO 4 2- + 2Н 3 O + .

Гидросульфат-ионы НSО 4 - существуют только в концентрированных раство­рах Н 2 SО 4:

H 2 SO 4 + H 2 O = НSO 4 - + Н 3 O + .

Серная кислота малолетуча и вытесняет многие другие кислоты из их солей, например:

СаF 2 + Н 2 SО 4 = СаSО 4 + 2НF.

РазбавленнаяН 2 SО 4 при взаимодействии с неблагородными металлами (стоящими в электрохимическом ряду напряжений левее водорода) выделяет водород.

КонцентрированнаяН 2 SО 4 никогда водорода не выделяет (формально даже потому, что не содержит совсем или содержит мало ионов Н 3 О+), реа­гирует как окислитель и переходит чаще всего в SО 2 , а при взаимодействии с сильными восстановителями - в S и Н 2 S. При нагревании Н 2 SО 4 (конц.) окисляет почти все металлы, в том числе и благородные металлы Сu, Нg и аg: Сu + 2Н 2 SО 4 (конц.) = СuSО 4 + 3О 2 + 2Н 2 О.

Обнаружение.

1. Концентрированную серную кислоту удобно идентифи­цировать по обугливанию погруженной в нее лучины.

2. Сульфат-ионы SО 4 2- образуют с ионами Ва 2+ белый мелкокристаллический осадок сульфата ба­рия ВаSО 4 .

Применение. Серная кислота относится к продуктам основного химиче­ского производства. Ее используют в производстве химических волокон (вис­козные шелка, шерсть, полиамидные волокна), удобрений (суперфосфат), взрывчатых веществ, моющих, смачивающих и эмульгирующих средств, кра­сителей, лекарственных препаратов, а также различных сульфатов, простых и сложных эфиров, некоторых кислот (фтороводородная кислота, винная кислота и др.), для рафинирования минеральных масел, при травлении ме­таллов, как компонент различных гальванических электролитов (для процес­сов хромирования, анодного окисления и др.), как электролит свинцовых аккумуляторов и для многих других целей.

Олеум

Дымящая серная кислота содержит избыток триоксида серы, в частности, в форме дисерной кислоты Н 2 S 2 О 7 . Такая жидкая смесь Н 2 SО 4 , Н 2 S 2 О 7 и избыточного SО 3 называется олеумом. Состав олеума указывается про­центным содержанием SО 3 (сверх моногидрата SО 3 *Н 2 О, т. е. 100 %-ой Н 2 SО 4).

Сульфаты - соли серной кислоты.

Сульфаты свинца (II), кальция, стронция и бария очень мало растворимы в воде, большинство других сульфатов легко растворяются в воде. Способ обнаружения их аналогичен способу обнаружения ионов SО 4 2- сер­ной кислоты. Многие сульфаты находятся в земной коре в виде минералов.

Важнейшие природные сульфаты: мирабилит (глауберова соль) - Nа 2 SО 4 *10Н 2 О, эпсомит (горькая, или английская, соль) МgSO 4 *7Н 2 О.

Купоросы - это кристаллогидраты сульфатов некоторых двухвалентных металлов:

железный купорос (светло-зеленый) FеSО 4 *7Н 2 O; медный купорос (голубой) СuSО 4 *5Н 2 О; никелевый купорос (зеленый) NiSО 4 *7Н 2 О; кобальтовый купорос (темно-красный) СоSО 4 *7Н 2 О цинковый купорос (белый) ZnSО 4 -7Н 2 О.

Квасцы - это кристаллогидраты двойных сульфатов:

алюмокалиевые квасцы К 2 SО 4 *А1 2 (SО 4) 3 *24Н 2 О;

хромокалиевые квасцы К 2 SO 4 *Сr 2 (SO 4) 3 *24Н 2 О;

железокалиевые квасцы К 2 SО 4 *Fе 2 (SО 4) 3 *24Н2О.

Соль Мора - это не квасцы, ее состав (NH 4) 2 SО 4 *FеSО 4 *6Н 2 О.

ДРУГИЕ СОЕДИНЕНИЯ СЕРЫ

Дисульфаты - это соли дисерной кислоты Н 2 S 2 O 7 .

Тиосерная кислота Н 2 S 2 О 3 устойчива только при низких температурах (ниже -72°С). Ее соли тиосульфаты – образуются при кипячении растворов сульфитов металлов с избытком серы:

Na 2 S 2 O 3 + S = Н 2 S 2 О 3 .

Получить кислоту Н 2 S 2 О 3 вытеснением ее из тиосульфатов с помощью сильной кислоты не удается, так как она разлагается: Nа 2 S 2 О 3 + 2НС1 = 2NаС1 + SО 2 + S + Н 2 О.

Пероксодисерная кислота Н 2 S 2 О 8 , или в более точной записи Н 2 S 2 О 6 (О 2), содержит пероксогруппу - О - О - , в свободном виде очень неустойчива. Ее соли - пероксодисульфаты - очень сильные окислители, например пероксодисульфат калия К 2 S 2 О 8 . Известна также пероксомоносерная кислота (кис­лота Каро) Н 2 SО 3 (О 2).

Дитионистая кислота Н 2 S 2 О 4 в свободном виде не известна, но получена ее соль дитионит натрия Nа 2 S 2 О 4 , которая используется в качестве восстано­вителя, например при синтезе кубовых красителей, при вытравном печатании и в процессах отбеливания. Дитионит натрия получают пропусканием диок­сида серы в водную суспензию цинка: Zn + 2SО 2 = Zn 2+ + S 2 O 4 , с последующим удалением из раствора ионов Zn 2+ добавлением карбоната натрия и кристаллизацией Na 2 S 2 О 4 . Ион S 2 О 4 2- содержит прямую связь сера - сера.

Дитионовая кислота Н 2 S 2 О 6 , ее соли дитионаты, и тетратионовая кислота Н 2 S 4 О 6 , ее соли тетратионаты, существуют только в разбавленном водном растворе. Они содержат связанные непосредственно в цепочку два и четыре атома серы. Дитионат марганца (П) образуется при обработке диоксида мар­ганца (пиролюзита) диоксидом серы: MnO 2 + 2SO 2 = MnS 2 O 6 .

Тетратионат натрия получается при взаимодействии тиосульфата натрия с йодом:

2Na 2 S 2 O 3 + I 2 = Nа 2 S 4 О 6 + 2NаI.

Другие кислородсодержащие кислоты серы - это сульфоксиловая кислота Н 2 SО 2 , тиосернистая кислота Н 2 S 2 О 2 , три-, пента- и гексатионовые кислоты Н 2 S 3 О 6 , Н 2 S 5 О 6 и Н 2 S 6 О 6 , их соли три-, пента- и гексатионаты.

Дихлорид дисеры S 2 С1 2 - оранжево-желтая, иногда бесцветная, дымящая во влажном воздухе жидкость с характерным удушливым запахом. Обра­зуется при нагревании серы с недостатком хлора. Применяют при вулкани­зации каучука.

Гексафторид серы SF 6 - бесцветный газ без запаха. Химически инертен. В технике применяют как газовый электрический изолятор.

Сульфурилхлорид SСl 2 О 2 и тионилхлорид SС1 2 О - бесцветные жидкости, образующие на воздухе туман и вызывающие сильный кашель. Они полностью гидролизуются водой:

SС1 2 О 2 + 2Н 2 О = Н 2 SО 4 + 2НС1; SС1 2 О + Н 2 О = SО 2 + 2НС1.

Известна также хлорсульфоновая кислота НSО 3 С1.

СЕЛЕН, ТЕЛЛУР, ПОЛОНИЙ И ИХ СОЕДИНЕНИЯ

Открытие. Селен Sе открыт в 1817 г. в шламе свинцовых камер (продук­ционных башен) сернокислотного завода (Берцелиус, Швеция).

Распространение. Селен - редкий элемент; собственных минералов не имеет. Содержится в небольших количествах (вместе с теллуром) в самород­ной сере и сульфидных рудах.

Получение. Выделение из анодного шлама медеэлектролитических уста­новок. С этой целью шлам обрабатывают раствором гидроксида натрия и диоксидом серы:

2SeO 2 + 2SO 2 + 2OН - = 2SО 4 2- + Sе + Н 2 О.

Твердый селен отделяют и очищают дистилляцией.

Свойства . Селен имеет две аллотропные модификации.

Серый (металлический) селен - вещество серого цвета, со слабым бле­ском. Не растворяется в сероуглероде. Электрическое сопротивление этой модификации резко (в »1000 раз) снижается на свету (по сравнению с электрическим сопротивлением в темноте). Устойчивая модификация.

Красный селен - неметаллическое вещество красного цвета. Растворим в СS 2 с образованием желтого раствора. Термодинамически неустойчивая модификация.

Селен на воздухе сгорает голубым пламенем, распространяя характерный запах гнилой редьки. В результате образуется белый твердый диоксид се­лена SеО 2 . Серый селен переходит в красный селен при растворении в го­рячей концентрированной серной кислоте и выливании полученного зеленого раствора в большой объем воды.

Применение . Селен используют в производстве фотоэлементов и выпрями­телей электрического тока.

Соединения селена. Свойства соединений селена аналогичны свойствам соединений серы. Наиболее известны селеноводород Н 2 Sе (производные - селениды); диоксид селена SеО 2 - белое твердое вещество, с водой образует селенистую кислоту Н 2 SеО 3 (соли - селениты); селеновая кислота Н 2 SеО 4 , равная по силе серной кислоте; ее соли - селенаты, из которых очень мало растворим в воде селенат бария ВаSеO 4 .

Теллур Те, как правило, сопровождает селен и серу в природных сульфидах, достаточно редкий элемент. Открыт в 1782 г. в золотоносных породах (Мюллер фон Райхенштейн, Венгрия). Представляет собой серебристо-белый мягкий, но хрупкий металл. Используется в полупро­водниковой технике. Теллуроводород Н 2 Те (производные - теллуриды) про­являет более сильные кислотные свойства, чем селеноводород, но по отноше­нию к кислороду воздуха намного более устойчив.

Полоний Ро открыт в 1898 г. в урановой смоляной руде (М. Склодовская-Кюри и П. Кюри, Франция). Очень редкий радиоактивный элемент. Полу­чается искусственно облучением висмута в ядерных реакторах; наиболее долгоживущий изотоп - полоний-209 (период полураспада 102 года). Представляет собой серебристо-белый блестящий металл, светится постоянной голубой люминесценцией. Во всех соединениях полоний ведет себя как типичный металл.