Понятие и классификация биообъектов. Иммобилизованные ферменты. Биотехнология витаминов и коферментов. Виды биологических объектов применяемых в биотехнологии, их классификация и характеристика. Биологические объекты животного происхождения. Биологические

Схема последовательно реализуемых стадий превращения исходного сырья в лекарственное средство. Оптимизация биообъекта, процессов и аппаратов как единого целого в биотехнологическом производстве.

Подготовительные операции при использовании в производстве биообъектов микроуровня. Многоэтапность подготовки посевного материала. Инокуляторы. Кинетические кривые роста микроорганизмов в закрытых системах. Связь скорости изменения количества микроорганизмов в экспоненциальной фазе роста с концентрацией клеток в системе.

Комплексные и синтетические питательные среды. Их компоненты. Концентрация отдельно расходуемого компонента питательной среды и скорость размножения биообъекта в техногенной нише. Уравнение Моно.

Методы стерилизации питательных сред. Критерий Дейндорфера - Хэмфри. Сохранение биологической полноценности сред при их стерилизации.

Стерилизация ферментационного оборудования. «Слабые точки» внутри стерилизуемых емкостей. Проблемы герметизации оборудования и коммуникаций.

Очистка и стерилизация технологического воздуха. Схема подготовки потока воздуха, подаваемого в ферментатор. Предварительная очистка. Стерилизующая фильтрация. Предел размера пропускаемых частиц. Эффективность работы фильтров. Коэффициент проскока.

Критерии подбора ферментаторов при реализации конкретных целей. Классификация биосинтеза по технологическим параметрам. Принципы организации материальных потоков: периодический, полупериодический, отъемно-доливной, непрерывный. Глубинная ферментация. Массообмен. Поверхностная ферментация.

Требования к ферментационному процессу в зависимости от физиологического значения целевых продуктов для продуцента, т. е. первичные метаболиты, вторичные метаболиты, высокомолекулярные вещества. Биомасса как целевой продукт. Требования к ферментационному процессу при использовании рекомбинантных штаммов, образующих чужеродные для биообъекта целевые продукты.

Выделение, концентрирование и очистка биотехнологических продуктов. Специфические особенности первых стадий. Седиментация биомассы. Уравнение скорости осаждения. Коагулянты. Флокулянты. Центрифугирование. Выделение из культуральной жидкости клеток высших растений, микроорганизмов. Отделение целевых продуктов, превращенных в твердую фазу. Сепарирование эмульсий. Фильтрование. Предварительная обработка культуральной жидкости для более полного разделения фаз. Кислотная коагуляция. Тепловая коагуляция. Внесение электролитов.

Методы извлечения внутриклеточных продуктов. Разрушение клеточной стенки биообъектов и экстрагирование целевых продуктов.

Сорбционная и ионообменная хроматография. Аффинная хроматография применительно к выделению ферментов. Мембранная технология. Классификация методов мембранного разделения. Общность методов очистки продуктов биосинтеза и оргсинтеза на конечных стадиях их получения (из концентратов). Сушка.

Стандартизация лекарственных средств, получаемых методами биотехнологии. Фасовка.

2.2. КОНТРОЛЬ И УПРАВЛЕНИЕ БИОТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ

Основные параметры контроля и управления биотехнологическими процессами. Общие требования к методам и средствам контроля. Современное состояние методов и средств автоматического контроля в биотехнологии. Контроль состава технологических растворов и газов. Потенциометрические методы контроля рН и ионного состава. Датчики рН и ионоселективные электроды. Газочувствительные электроды. Стерилизация датчиков растворенных газов.

Контроль концентрации субстратов и биотехнологических продуктов. Титриметрические методы. Оптические методы. Биохимические (ферментативные) методы контроля. Электроды и биосенсоры на основе иммобилизованных клеток. Высокоэффективная жидкостная хроматография при решении задач биотехнологического производства.

Основные теории автоматического регулирования. Статические и динамические харак-

теристики биотехнологических объектов. Классификация объектов управления в зависимости от динамических характеристик.

Применение ЭВМ при биотехнологическом производстве лекарственных препаратов. Создание автоматизированных рабочих мест. Разработка автоматизированных систем управления. Пакеты прикладных программ. Структура исследований в области биотехнологии микробного синтеза. Применение ЭВМ на различных этапах производства и получения биотехнологических продуктов. Принципы и этапы анализа данных и математического моделирования биотехнологических систем. Планирование и оптимизация многофакторных экспериментов. Кинетические модели биосинтеза и биокатализа. Организация автоматизированных банков данных по биотехнологическим процессам и продуктам.

2.3. БИОТЕХНОЛОГИЯ И ПРОБЛЕМЫ ЭКОЛОГИИ И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

Биотехнология как наукоемкая («высокая») технология и ее преимущества в экологическом аспекте перед традиционными технологиями. Направления дальнейшего совершенствования биотехнологических процессов применительно к проблемам охраны окружающей среды. Малоотходные технологии. Итоги и перспективы их внедрения на биотехнологических производствах. Особенности биотехнологических производств применительно к их отходам.

Рекомбинантные продуценты биологически активных веществ и проблемы объективной информации населения. Организация контроля за охраной окружающей среды в условиях биотехнологического производства.

Классификация отходов . Соотношение различных видов отходов. Очистка жидких отходов. Схемы очистки. Аэротенки. Активный ил и входящие в него микроорганизмы.

Создание методами генетической инженерии штаммов микроорганизмов-деструкторов со способностью к деструкции веществ, содержащихся в жидких отходах. Основные характеристики штаммов деструкторов. Их неустойчивость в природных условиях. Сохранение штаммов на предприятиях. Нормы внесения биомассы штаммов при пиковых нагрузках на очистные сооружения.

Уничтожение или утилизация твердых (мицелиальных) отходов. Биологические, физикохимические, термические методы обезвреживания мицелиальных отходов. Утилизация мицелиальных отходов в строительной промышленности. Использование отдельных фракций мицелиальных отходов в качестве пеногасителей и др.

Очистка выбросов в атмосферу. Биологические, термические, физико-химические и другие методы рекуперации и обезвреживания выбросов в атмосферу.

Единая система GLP, GCP и GMP при предклиническом, клиническом испытании лекарств и их производстве. Особенности требований GMP к биотехнологическому производству. Требования к условиям хранения сырья для комплексных питательных сред. Карантин. Правила GMP применительно к производству бета-лактамных антибиотиков.

Причины проведения валидации при замене штаммов-продуцентов и изменении составов ферментационных сред.

Вклад биотехнологии в решение общих экологических проблем. Замена традицион-

ных производств. Сохранение природных ресурсов источников биологического сырья. Разработка новых высокоспецифичных методов анализа. Биосенсоры.

Перспективы получения, модификации и использования в защите окружающей среды феромонов, кайромонов, алломонов как природных сигнальных и коммуникативных молекул в надорганизменных системах.

2.4. БИОМЕДИЦИНСКИЕ ТЕХНОЛОГИИ

Определение понятия «биомедицинские технологии». Решение кардинальных проблем медицины на основе достижений биотехнологии. Международный проект «Геном человека» и его цели. Этические проблемы. Антисмысловые нуклеиновые кислоты, пептидные факторы роста тканей и другие биологические продукты новых поколений: молекулярные механизмы

их биологической активности и перспективы практического применения. Коррекция наследственных болезней на уровне генотипа (генотерапия) и фенотипа. Биопротезирование. Репродукция тканей. Трансплантация тканей и органов. Поддержание гомеостаза. Гемосорбция. Диализ. Оксигенация. Перспективы использования гормонов, продуцируемых вне эндокринной системы.

Состояние и направления развития биотехнологии лекарственных форм: традиционных и инновационных.

3. Частная биотехнология

Биотехнология белковых лекарственных веществ. Рекомбинантные белки, принадле-

жащие к различным группам физиологически активных веществ.

Инсулин. Источники получения. Видовая специфичность. Иммуногенные примеси. Перспективы имплантации клеток, продуцирующих инсулин.

Рекомбинантный инсулин человека . Конструирование плазмид. Выбор штамма микроорганизма. Выбор лидерной последовательности аминокислот. Отщепление лидерных последовательностей. Методы выделения и очистки полупродуктов. Сборка цепей. Контроль за правильным образованием дисульфидных связей. Ферментативный пиролиз проинсулина. Альтернативный путь получения рекомбинантного инсулина; синтез А- и В-цепей в разных культурах микробных клеток. Проблема освобождения рекомбинантного инсулина от эндотоксинов микроорганизмов-продуцентов. Биотехнологическое производство рекомбинантного инсулина. Экономические аспекты. Создание рекомбинантных белков «второго поколения» на примере инсулина.

Интерферон (интерфероны). Классификация, α-, β- и γ-интерфероны. Интерфероны при вирусных и онкологических заболеваниях. Видоспецифичность интерферонов. Ограниченные возможности получения α- и β-интерферонов из лейкоцитов и Т-лимфоцитов. Лимфобластоидный интерферон. Методы получения β-интерферона при культивировании фибробластов.

Индукторы интерферонов. Их природа. Механизм индукции. Промышленное производство интерферонов на основе природных источников.

Синтез различных классов интерферона человека в генетически сконструированных клетках микроорганизмов. Экспрессия генов, встроенных в плазмиду. Вариации в конформации синтезируемых в клетках микроорганизмов молекул интерферонов за счет неупорядоченного замыкания дисульфидных связей. Проблемы стандартизации. Производство рекомбинантных образцов интерферона и политика различных фирм на международном рынке.

Интерлейкины. Механизм биологической активности. Перспективы практического применения. Микробиологический синтез интерлейкинов. Получение продуцентов методами генетической инженерии. Перспективы биотехнологического производства.

Гормон роста человека . Механизм биологической активности и перспективы применения в медицинской практике. Микробиологический синтез. Конструирование продуцентов.

Производство ферментных препаратов . Ферменты, используемые как лекарственные средства. Протеолитические ферменты. Амилолитические, липолитические ферменты, L- аспарагиназа. Проблемы стандартизации целевых продуктов.

Ферментные препараты как блокатализаторы в фармацевтической промышленности. Ферменты трансформации β-лактамных антибиотиков. Ферментные препараты, используемые в генетической инженерии (рестриктазы, лигазы п т. д.).

Биотехнология аминокислот . Микробиологический синтез. Продуценты. Преимущества микробиологического синтеза перед другими способами получения. Общие принципы конструирования штаммов микроорганизмов-продуцентов аминокислот как первичных метаболитов. Основные пути регуляции биосинтеза и его интенсификации. Механизмы биосинтеза глутаминовой кислоты, лизина, треонина. Конкретные подходы к регуляции каждого процесса.

Получение аминокислот с помощью иммобилизованных клеток и ферментов. Химикоэнзиматический синтез аминокислот. Получение оптических изомеров аминокислот путем использования амилаз микроорганизмов.

Биотехнология витаминов и коферментов . Биологическая роль витаминов. Традиционные методы получения (выделение из природных источников и химический синтез). Микробиологический синтез витаминов и конструирование штаммов-продуцентов методами генетической инженерии. Витамин В2 (рибофлавин). Основные продуценты. Схема биосинтеза и пути интенсификации процесса.

Микроорганизмы-прокариоты, т. е. продуценты витамина В12 (пропионовокислые бактерии и др.). Схема биосинтеза. Регуляция биосинтеза.

Микробиологический синтез пантотеновой кислоты, витамина РР.

Биотехнологическое производство аскорбиновой кислоты (витамина С). Микроорганиз- мы-продуценты. Различные схемы биосинтеза в промышленных условиях. Химический синтез аскорбиновой кислоты и стадия биоконверсии в производстве витамина С.

Эргостерин и витамины группы D. Продуценты и схема биосинтеза эргостерина. Среды и пути интенсификации биосинтеза. Получение витамина D из эргостерина.

Каротиноиды и их классификация. Схема биосинтеза. Среды для микроорганизмовпродуцентов и регуляция биосинтеза. Стимуляторы каротинообразования, β-каротин. Образование из β-каротина витамина А. Убихиноны (коферменты Q). Источник получения: дрожжи и др. Интенсификация биосинтеза.

Биотехнология стероидных гормонов. Традиционные источники получения стероидных гормонов. Проблемы трансформации стероидных структур. Преимущества биотрансформации перед химической трансформацией. Штаммы микроорганизмов, обладающие способностью к трансформации (биоконверсии) стероидов. Конкретные реакции биоконверсии стероидов, Подходы к решению селективности процессов биоконверсии. Микробиологический синтез гидрокортизона, получение из него путем биоконверсии преднизолона.

Культуры растительных клеток и получение лекарственных веществ. Разработка ме-

тодов культивирования растительных тканей и изолированных клеток как достижение биотехнологической науки. Биотехнологическое производство и ограниченность или малая доступность ряда видов растительного сырья как источника лекарственных веществ. Понятие тотипотентности растительных клеток. Каллусные и суспензионные культуры. Особенности роста растительных клеток в культурах. Среды. Фитогормоны. Проблемы стерильности. Особенности метаболизма растительных клеток in vitro. Биореакторы. Применение растительных клеток для трансформации лекарственных веществ. Получение дигоксина. Иммобилизация растительных клеток. Методы иммобилизации. Проблемы экскреции целевого продукта из иммобилизованных клеток.

Методы контроля и идентификации (цитофизиологические, химические, биохимические, биологические) биомассы и препаратов, полученных методом клеточной биотехнологии.

Лекарственные препараты, получаемые из культур клеток женьшеня, радиолы розовой, воробейника, стевии, наперстянки, табака и др.

Антибиотики как биотехнологические продукты. Методы скрининга продуцентов.

Биологическая роль антибиотиков как вторичных метаболитов. Происхождение антибиотиков и эволюция их функций. Возможность скрининга низкомолекулярных биорегуляторов при отборе по антибиотической функции (иммунодепрессантов, ингибиторов ферментов животного происхождения и др.).

Причины позднего накопления антибиотиков в ферментационной среде по сравнению с накоплением биомассы. Биосинтез антибиотиков. Мультиферментные комплексы. Сборка углеродного скелета молекул антибиотиков, принадлежащих к β-лактамам, аминогликозидам, тетрациклинам, макролидам. Роль фенилуксусной кислоты при биосинтезе пенициллина. Фактор А и биосинтез стрептомицина.

Пути создания высокоактивных продуцентов антибиотиков. Механизмы зашиты от собственных антибиотиков у их «суперпродуцентов». Плесневые грибы - продуценты антибиотиков. Особенности строения клетки и цикла развития при ферментации.

Актиномицеты - продуценты антибиотиков. Строение клетки. Антибиотики, образуемые актиномицетами.

Бактерии (эубактерии) - продуценты антибиотиков. Строение клетки. Антибиотики, образуемые бактериями.

Полусинтетические антибиотики . Биосинтез и оргсинтез в создании новых антибиотиков.

Механизмы резистентности бактерий к антибиотикам. Хромосомная и плазмидная резистентность. Транспозоны. Целенаправленная биотрансформация и химическая трансформация β-лактамных структур. Новые поколения цефалоспоринов и пенициллинов, эффективные в отношении резистентных микроорганизмов. Карбапенемы. Монобактамы. Комбинированные препараты: амоксиклав, уназин.

Иммунобиотехнология как один из разделов биотехнологии. Основные составляющие

и пути функционирования иммунной системы. Иммуномодулирующие агенты: иммуностимуляторы и иммуносупрессоры (иммунодепрессанты).

Усиление иммунного ответа с помощью иммунобиопрепаратов. Вакцины на основе рекомбинантных протективных антигенов или живых гибридных носителей. Антисыворотки к инфекционным агентам, к микробным токсинам. Технологическая схема производства вакцин

и сывороток.

Неспецифическое усиление иммунного ответа. Рекомбинантные интерлейкины, интерфероны и др. Механизмы биологической активности. Тимические факторы. Трансплантация костного мозга.

Подавление иммунного ответа с помощью иммунобиопрепаратов. Рекомбинантные антигены. IgЕ - связующие молекулы и созданные на их основе толерогены. Технология рекомбинантной ДНК и получение медиаторов иммунологических процессов.

Производство моноклональных антител и использование соматических гибридов животных клеток. Механизмы иммунного ответа на конкретный антиген. Разнообразие антигенных детерминантов. Гетерогенность (поликлональность) сыворотки. Преимущества при использовании моноклональных антител. Клоны клеток злокачественных новообразований. Слияние с клетками, образующими антитела. Гибридомы. Криоконсервирование. Банки гибридом. Технология производства моноклональных антител.

Области применения моноклональных антител. Методы анализа, основанные на использовании моноклональных (в отдельных случаях поликлональных) антител. Иммуноферментный анализ (ИФА). Метод твердофазного иммуноанализа (ELISA - enzyme linked immunosorbentassay). Радиоиммунный анализ (РИА). Преимущества перед традиционными методами при определении малых концентраций тестируемых веществ и наличии в пробах примесей с близкой структурой и сходной биологической активностью. ДНК- и РНК-зонды как альтернатива ИФА и РИА при скрининге продуцентов биологически активных веществ (обнаружение генов вместо продуктов экспрессии генов).

Моноклональные антитела в медицинской диагностике. Тестирование гормонов, антибиотиков, аллергенов и т. д. Лекарственный мониторинг. Ранняя диагностика онкологических заболеваний. Коммерческие диагностические наборы на международном рынке.

Моноклональные антитела в терапии и профилактике. Перспективы высокоспецифичных вакцин, иммунотоксинов. Включение моноклональных антител в оболочку липосом и повышение направленности транспорта лекарств. Типирование подлежащих пересадке тканей.

Обязательное тестирование препаратов моноклональных антител на отсутствие онкогенов. Моноклональные антитела как специфические сорбенты при выделении и очистке биотехнологических продуктов.

Нормофлоры (пробиотики, микробиотики, эубиотики) - это препараты на основе жи-

вых культур микроорганизмов, т. е. симбионтов. Общие проблемы микроэкологии человека. Понятие симбиоза. Различные виды симбиоза. Резидентная микрофлора желудочно-кишечного тракта. Причины дисбактериоза. Нормофлоры в борьбе с дисбактериозом. Бифидобактерии, молочно-кислые бактерии: непатогенные штаммы кишечной палочки, образующей бактериоцины как основа нормофлоров. Механизм антагонистического воздействия на гнилостные бактерии. Получение готовых форм нормофлоров. Монопрепараты и препараты на основе смешанных культур. Лекарственные фирмы бифидумбактерина, колибактерина, лактобактерина.

II. МАТЕРИАЛЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Биотехнология. История развития. Биотехнология лекарственных средств

дать представление о биотехнологии как специфической области научной и практической деятельности человека, в основе которой лежит использование биообъектов. Познакомить с историей и основными путями развития биотехнологии.

Рассматриваемые вопросы:

Что такое биотехнология? История развития биотехнологии.

Основные достижения и перспективы развития биотехнологии в различных отраслях деятельности.

Главные проблемы биотехнологии и пути их решения на современном этапе развития науки.

Биологическая технология

Биотехнология как наука - это наука о методах и технологиях создания и использования природных и генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения, в том числе и лекарственных средств.

Биотехнология как сфера производства - это направление научно-технического прогресса, использующее биологические процессы и объекты для целенаправленного воздействия на человека и окружающую среду, а также в интересах получения полезных человеку продуктов.

«Биотехнология - наука, изучающая методы получения полезных для жизни и благосостояния людей веществ и продуктов в управляемых условиях, используя микроорганизмы, клетки животных и растений или изолированные из клетки биологические структуры».

Беккер , 1990 г.

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

Связь биотехнологии с другими науками:

История развития биотехнологии

Третий съезд Европейской ассоциации биотехнологов в Мюнхене (1984 г.) по предложению голландского ученого Хаувинка выделил 5 периодов развития биотехнологии.

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

_______________________________

Периоды развития биотехнологии

________________________________

Человечество неумолимо придет к истощению энергетических, минеральных и земельных ресурсов.

На смену старым технологиям идет биотехнология.

В XXI в. биологизация станет одним из ведущих направлений ускоренного развития всего мирового хозяйства и условий жизни людей.

Эффективность биотехнологических методов

Сравнение способности образовавыть новый белок животными (корова), и микробами (дрожжи). Каждый из этих организмов на 500 кг своей массы за 1 сутки производит следующие количества новообразованного белка: корова - 0,5 кг, т. е. примерно это масса хомяка; соя 5 кг, т. е. масса кошки; дрожжи 50000 кг, т. е. масса десяти взрослых слонов. Если бы корова обладала производительностью дрожжей, то ее привес за одни единственные сутки, по всей вероятност, был равен массе десяти слонов

Реннеберг Р., Реннеберг И. От пекарни до биофабрики. -

М.: Мир, 1991. - 112 с.

Клетки биологических объектов являются своего рода биофабриками по синтезу различных веществ (белков, жиров, углеводов, витаминов, аминокислот, нуклеиновых кислот, антибиотиков, гормонов, антител, ферментов, спиртов и т.д.), не требуют больших энергетических затрат и чрезвычайно быстро воспроизводятся (бактерии - за 20–60 мин, дрожжи - за 1,5–2 часа, тогда как животная клетка

За 24 часа).

Биосинтез таких сложных веществ, как белки, антибиотики, антигены, антитела и др. значительно экономичнее и технологически доступнее, чем химический синтез.

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

________________________________

Название

Наиболее существенные

достижения

Допастеров-

Использование спиртового броже-

ния в производстве пива и вина.

Использование

молочнокислого

брожения при переработке молока.

Получение хлебопекарных и пив-

ных дрожжей.

Использование

уксуснокислого

брожения в производстве уксусной

Производство этанола.

пастеровский

Производство бутанола и ацетона.

Внедрение в практику вакцин, сы-

Аэробная

канализацион-

Производство

кормовых дрожжей

на основе углеводов.

Антибиотиков

Производство

пенициллина

антибиотиков.

Культивирование

растительных

Получение вирусных вакцин.

Микробиологическая трансформа-

ция стероидов.

Управляемо-

Производство аминокислот с по-

го биосинте-

мощью микробных мутантов.

Производство витаминов.

Получение чистых ферментов.

Промышленное

использование

иммобилизованных

ферментов

Анаэробная очистка сточных вод.

Получение биогаза.

Производство

бактериальных

лисахаридов.

Новой и но-

Внедрение

клеточной

инженерии

вейшей био-

для получения целевых продуктов.

технологии

Получение гибридом и монокло-

нальных антител.

Использование

инженерии

для производства белков.

Трансплантация эмбрионов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    Характеристика биотехнологического процесса в зависимости от получаемого целевого продукта, от механизма образования конечного продукта, от условий проведения процесса. Выбор различных способов разделения в зависимости от локализации целевого продукта.

    контрольная работа , добавлен 16.05.2015

    Учение о предковых формах как один из разделов селекции. Цепочка эволюционных изменений. Учения Чарльза Дарвина. Центры происхождения культурных растений в учении академика Н.И. Вавилова. Преимущества генетического разнообразия исходного материала.

    реферат , добавлен 21.01.2016

    Этапы проведения экспериментов по переносу генетического материала, применение технологий для изучения процессов дифференцировки, канцерогенеза. Условия культивирования клеток. Виды и назначение селекции. Перенос генов, опосредованный хромосомами и ДНК.

    учебное пособие , добавлен 11.08.2009

    Понятие мутации как любого наследственного изменения, не связанного с расщеплением или с обычной рекомбинацией неизмененного генетического материала. Типы хромосомных мутаций. Активность муосомальных ферментов при разных патологических состояниях.

    контрольная работа , добавлен 15.08.2013

    Понятие о наследственности и изменчивости. Общие закономерности мутагенеза. Особенности действия физических и химических мутагенов. Использование индуцированного мутагенеза. Генетические последствия загрязнения окружающей среды.

    реферат , добавлен 04.09.2007

    Свойства мутаций как спонтанных изменений генотипа. Модификации молекулы ДНК под воздействием мутагенов. Характеристика способов поддержания генетического гомеостаза на молекулярно-генетическом, клеточном, организменном и популяционно-видовом уровнях.

    реферат , добавлен 17.11.2015

    Описания изменений в ДНК клетки, возникающих под действием ультрафиолета и рентгеновских лучей. Характеристика особенностей генных и хромосомных мутаций. Причины и передача цитоплазматических мутаций. Исследование мутаций в соматических клетках растений.

    «Методы селекции животных и растений» - Селекция микроорганизмов. Патогенные микроорганизмы вызывают болезни растений, животных и человека. Биотехнология. Дальнейший прогресс человечества во многом связан с развитием биотехнологии. БИОТЕХНОЛОГИЯ, использование живых организмов и биологических процессов в промышленном производстве. Иногда к микроорганизмам относят вирусы.

    «Вавилов основы селекции» - модульный блок «Селекция». Способ организации учебного процесса на основе блочно-модульного представления учебной информации. Структура урока. Комплексная дидактическая цель (КДЦ): Основы селекции. Модуль № 1. Работы Н.И.Вавилова.

    «Селекция» - Применение ферментных препаратов в виноделии позволяет ускорить созревание и улучшить качество вин. Плесневые и лучистые грибы, измененные методами селекции, вырабатывают в сотни раз больше антибиотиков по сравнению с исходными формами. Селекция микроорганизмов. На разработку новых методов селекционной работы большое влияние оказала генетика - теоретическая база селекции.

    «Основы селекции» - Родина кукурузы, какао, фасоли, красного перца. Восточноазиатский центр. Аутбридинг. Родина ананаса, картофеля, хинного дерева, томатов. Главные центры происхождения культурных растений. Селекция растений. Биотехнология. Средиземноморский центр. И. В. Мичурин разработал метод отдаленной гибридизации для получения новых сортов.

    «Селекция микроорганизмов» - Родственное. Кто является родоначальником различных пород овец? Миекодром. Кошек 20. Страусов 18. Назовите породы коров, разводимых у нас в республике? Уток 15. Индивидуальный. Кто является родоначальником различных пород свиней? Прочитайте текст и укажите на ошибки. Назовите породы, разводимые у нас в республике?

    «Биология селекция» - Методы селекции растений. СЕЛЕКЦИЯ – эволюция, управляемая человеком. Центры происхождения культурных растений. Воздействие радиацией и химическими веществами на растения и животных. Задачи селекции. Метод мутагенеза. Метод гибридизации. Закон гомологических рядов наследственной изменчивости. Название науки от латинского «селекцио» - выбор, отбор.

    1 Введение 3 2 Экспериментальная часть 4 2.1 Понятие биообъекта 4 2.2 Совершенствование биообъектов методами мутагенеза и селекции 7 2.3 Методы генной инженерии 12 3 Выводы и предложения 24 Список литературы 25

    Введение

    К задачам современной селекции относится создание новых и улучшение уже существующих сортов растений, пород животных и штаммов микроорганизмов. Теоретической основой селекции является генетика, так как именно знание законов генетики позволяет целенаправленно управлять появлением мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. В результате применения знаний по генетике удалось создать более 10000 сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т. п. В связи с развитием генетики, селекция получила новый импульс к развитию. Генная инженерия позволяет подвергать организмы целенаправленной модификации. Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток и т.п .

    Заключение

    Генетическая инженерия – перспективное направление современной генетики, имеющее большое научное и практическое значение и лежащее в основе современной биотехнологии. Для получения необходимого целевого продукта генной инженерии а также для экономической выгоды необходимо применение таких методов как мутагенез и селекция. Данные методы широко используются при получении многих лекарственных веществ (например, производство человеческого инсулина путём использования генномодифици¬рованных бактерий, производство эритропоэтина в культуре клеток и т.д.), получение новых генетически модифицированных сортов зерновых культур и многое другое. Применение законов генетики позволяет правильно управлять мето-дами селекции и мутации, предсказывать результаты скрещивания, пра-вильно проводить отбор гибридов. В результате применения этих знаний уда¬лось создать более 10000 сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т. п .

    Список литературы

    1. Блинов В. А. Общая биотехнология: Курс лекций. Часть 1. ФГОУ ВПО "Саратовский ГАУ". Саратов, 2003. – 162 с. 2. Орехов С.Н., Катлинский А.В. Биотехнология. Учеб. пособие. – М.: Издательский центр «Академия», 2006. – 359 с. 3. Катлинский А.В. Курс лекций по биотехнологии. – М.: Издательство ММА им. Сеченова, 2005. – 152 с. 4. Божков А. И. Биотехнология. Фундаментальные и промышленные аспекты. – Х.: Федорко, 2008. – 363 с. 5. Попов В.Н., Машкина О.С. Принципы и основные методы генетической инженерии. Учеб. пособие. Издательско-полиграфический центр ВГУ, 2009. – 39 с. 6. Щелкунов С.Н. Генетическая инженерия. Учеб.-справ. пособие. – Новосибирск: Сиб. унив. изд-во, 2004. – 496 с. 7. Глик Б. Молекулярная биотехнология: принципы и применение /Б. Глик, Дж. Пастернак. – М. : Мир, 2002. – 589 с. 8. Жимулев И.Ф. Общая и молекулярная генетика / И.Ф. Жимулев. – Новосибирск: Изд-во Новосиб. ун-та, 2002. – 458 с. 9. Рыбчин В.Н. Основы генетической инженерии / В.Н. Рыбчин. – СПб.: Изд-во СПбГТУ, 1999. – 521с. 10. Электрон. учеб. пособие / Н. А. Войнов, Т. Г. Волова, Н. В. Зобова и др. ; под науч. ред. Т. Г. Воловой. – Красноярск: ИПК СФУ, 2009.