Химическая картина живой природы. Тема: Контрольная по естествознанию. Учение о составе вещества

Процесс зарождения химической науки был длительным, сложным и противоречивым. Истоки химических знаний лежат в глубокой древности и связаны с потребностью людей получать различные вещества. Происхождение термина «химия» не совсем ясно, но по одной из версий это означает «египетское искусство», по другой - «искусство получения соков растений».

Историю химической науки можно разделить на несколько этапов:

1...Период алхимии - с древности до XVI в.

2...Период зарождения научной химии - XVI-XVII вв.

3...Период открытия основных законов химии - первые 60 лет XIX в.

4...Современный период - с 60-х годов XIX в. до настоящего времени.

Исторически алхимия сложилась как тайное, мистическое знание, направленное на поиски философского камня, превращающего металлы в золото и серебро, и эликсира долголетия. В течение своей многовековой истории алхимия решала многие практические задачи, связанные с получением веществ и заложила фундамент для создания научной химии.

Наивысшего развития алхимия достигла в трех основных типах:

·...греко-египетском;

·...арабском;

·...западно-европейском.

Родиной алхимии был Египет. Еще в древности там были известны способы получения металлов, сплавов, применявшихся для производства монет, оружия, украшений. Эти знания держались в секрете и были достоянием ограниченного круга жрецов. Увеличивающийся спрос на золото подтолкнул металлургов к поиску способов превращения (трансмутации) неблагородных металлов (железа, свинца, меди и др.) в золото. Алхимический характер древней металлургии связал ее с астрологией и магией. Каждый металл имел астрологическую связь с соответствующей планетой. Погоня за философским камнем позволила углубить и расширить знания о химических процессах. Получила развитие металлургия, были усовершенствованы процессы очистки золота и серебра.

Тем не менее, в период правления императора Диоклетиана в Древнем Риме алхимия стала преследоваться. Возможность получения дешевого золота напугала императора и по его.приказу были уничтожены все труды по алхимии. Значительную роль в запрете алхимии сыграло христианство, которое рассматривало ее как дьявольское ремесло.

После завоевания арабами Египта в VII в. н. э. алхимия стала развиваться в арабских странах. Самым выдающимся арабским алхимиком был Джабир ибн Хайям, известный в Европе как Гебер. Он описал нашатырный спирт, технологию приготовления свинцовых белил, способ перегонки уксуса для получения уксусной кислоты. Основополагающей идеей Джабира являлась теория образования всех, известных тогда семи металлов из смеси ртути и серы как двух основных составляющих. Эта идея предвосхитила деление простых веществ на металлы и неметаллы.


Развитие арабской алхимии шло двумя параллельными путями. Одни алхимики занимались трансмутацией металлов в золото, другие искали эликсир жизни, дававший бессмертие.

Появление алхимии в странах Западной Европы стало возможным благодаря крестовым походам. Тогда европейцы позаимствовали у арабов научно-практические знания, среди которых была алхимия. Европейская алхимия попала под покровительство астрологии и поэтому приобрела характер тайной науки. Имя самого выдающегося средневекового западноевропейского алхимика осталось неизвестным, известно лишь, что он был испанцем и жил в XIV веке. Он первым описал серную кислоту, процесс образования азотной кислоты, царской водки. Несомненной заслугой европейской алхимии было изучение и получение минеральных кислот, солей, спирта, фосфора и т. д. Алхимиками была создана химическая аппаратура, разработаны различные химические операции: нагревание на прямом огне, водяной бане, прокаливание, перегонка, возгонка, выпаривание, фильтрование, кристаллизация и др. Таким образом, были подготовлены соответствующие условия для развития химической науки.

Период зарождения химической науки охватывает три столетия - с XVI по XIX вв. Условиями становления химии как науки были:

·...обновление европейской культуры;

·...потребность в новых видах промышленного производства;

·...открытие Нового света;

·...расширение торговых отношений.

Отделившись от старой алхимии, химия приобрела большую свободу исследования и утвердилась как единая независимая наука.

В XVI в. на смену алхимии пришло новое направление, которое занималось приготовлением лекарств. Это направление получило название ятрохимии . Основателем ятрохимии был швейцарский ученый Теофраст Бомбаст фон Гогенгейм, известный в науке под именем Парацельс. Ятрохимия стремилась соединить медицину с химией, используя препараты нового типа, приготовленные из минералов. Ятрохимия принесла значительную пользу химии, т. к. способствовала освобождению ее от влияния алхимии и заложила научно-практические основы фармакологии.

В XVII столетии, в век бурного развития механики, в связи с изобретением паровой машины, возник интерес химии к процессу горения. Итогом этих исследований стала теория флогистона , основоположником которой был немецкий химик и врач Георг Шталь. Теория флогистона основана на утверждении, что все горючие вещества богаты особым горючим веществом - флогистоном. Чем больше флогистона содержит вещество, тем более оно способно к горению. Металлы тоже содержат флогистон, но теряя его, превращаются в окалину. При нагревании окалины с углем, металл забирает от него флогистон и возрождается. Теория флогистона, несмотря свою на ошибочность, давала приемлемое объяснение процессу выплавки металлов из руд. Необъяснимым оставался вопрос, почему зола и сажа, оставшиеся от сгорания таких веществ, как дерево, бумага, жир, намного легче, чем исходное вещество.

В XVIII в. французский физик Антуан Лоран Лавуазье, нагревая различные вещества в закрытых сосудах, установил, что общая масса всех веществ, участвующих в реакции, остается без изменений. Лавуазье пришел к выводу, что масса веществ никогда не создается и не уничтожается, а лишь переходит от одного вещества к другому. Этот вывод, известный сегодня как закон сохранения массы , стал основой для всего процесса развития химии XIX в.

Продолжая исследования, Лавуазье установил, что воздух является не простым веществом, а смесью газов, пятую часть которого составляет кислород, а остальные 4/5 азот. В это же время английский физик Генри Кэвендиш выделил водород и, сжигая его, получил воду, доказав, что вода - это соединение водорода и кислорода.

Проблема изучения химического состава веществ была главной в развитии химии вплоть до 30-40-х годов XIX в. Английский химик Джон Дальтон открыл закон кратных отношений и создал основы атомной теории . Он установил, что два элемента могут соединяться между собой в разных соотношениях, при этом каждая комбинация представляет собой новое соединение. Дальтон исходил из положения древних атомистов о корпускулярном строении материи, но, основываясь на понятии химического элемента, сформулированном Лавуазье, полагал, что все атомы отдельного элемента одинаковы и характеризуются своим атомным весом. Этот вес относителен, т. к. абсолютный атомный вес атомов определить невозможно. Дальтон составил первую таблицу атомных весов на основе водородной единицы.

Поворотный этап в развитии химической атомистики был связан с именем шведского химика Иенса Якоба Берцелиуса, который изучая состав химических соединений, открыл и доказал закон постоянства состава . Это позволило объединить атомистику Дальтона с молекулярной теорией, которая предполагала существование частиц (молекул), образованных из двух или более атомов и способных перестраиваться при химических реакциях. Заслугой Берцелиуса является введение химической символики , позволяющей обозначать не только элементы, но и химические реакции. Символ элемента обозначался первой буквой его латинского или греческого названия. В случаях, когда названия двух или более элементов начинаются с одной буквы, к ним добавляется вторая буква названия. Эта химическая символика была признана международной и используется в науке до настоящего времени. Берцелиусу также принадлежит идея разделения всех веществ на неорганические и органические.

До середины XIX в. развитие химии происходило беспорядочно и хаотически: открывались и описывались новые химические элементы, химические реакции, благодаря чему накопился огромный эмпирический материал, который требовал систематизации. Логическим завершением всего многовекового процесса развития химии стал первый международный химический конгресс, состоявшийся в сентябре 1860 г. в немецком городе Карлсруэ. На нем были сформулированы и приняты основополагающие принципы, теории и законы химии, которые заявили о химии как о самостоятельной развитой науке. Этот форум, внеся ясность в понятия атомных и молекулярных весов, подготовил условия для открытия периодической системы элементов.

Изучая химические элементы, расположенные в порядке увеличения их атомных весов, Менделеев обратил внимание на периодичность изменения их валентностей. Основываясь на увеличении и уменьшении валентности элементов в соответствии с их атомным весом, Менделеев разделил элементы на периоды. Первый период включает только водород, а затем следуют два периода по семь элементов, а затем периоды, где более семи элементов. Такая форма таблицы была удобной и наглядной, что сделало ее признанной мировым сообществом ученых.

Настоящим триумфом периодической системы стало предсказание свойств еще не открытых химических элементов, под которые в таблице были оставлены пустые клетки. Открытие периодического закона Д. И. Менделевым стало выдающимся событием в химии, приведя ее в состояние стройной систематизированной науки.

Следующим важным этапом в развитие химии явилось создание теории химического строения органических соединений А. М. Бутлеровым, которая утверждала, что свойства веществ зависят от порядка расположения атомов в молекулах и от их взаимного влияния.

На основе системы химических наук складывается химическая картина мира , т. е. взгляд на природу с точки зрения химии. Ее содержанием являются:

1...Учение о химической организации объектов живой и неживой природы.

2...Представление о происхождении всех основных типов природных объектов, их естественной эволюции.

3...Зависимость химических свойств природных объектов от их структуры.

4...Закономерности природных процессов как процессов химического движения.

5...Знание о специфических свойствах искусственно синтезируемых объектов.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

1.Введение. Научная картина мира 2.Предмет познания и важнейшие особенности химический науки 2.1. Алхимия как предыстория химии. Эволюция химической науки 2.2.Специфика химии как науки 2.3. Важнейшие особенности современной химии 3. Концептуальные системы химии 3. 1. Понятие о химическом элементе 3. 2. Современная картина химических знаний 3. 2. 1. Учение о составе вещества 3. 2. 2. Органогены 3. 2. 3. Учение о химических процессах 4. Антропогенный химизм и его влияние на среду обитания 5. Выводы

3 слайд

Описание слайда:

Каждый человек пытается познать этот мир и осознать свое место в нем. Чтобы познать мир, человек из частных знаний о явлениях и закономерностях природы пробует создать общее – научная картина мира -основные идеи наук о природе -принципы -закономерности не оторванные друг от друга, а составляющие единство знаний о природе, определяющие стиль научного мышления на данном этапе развития науки и культуры человечества

4 слайд

Описание слайда:

Ученые выделяют разные картины мира и предлагают свои критерии классификации «Мир» - действительность, реальность (объективная), бытие, природа и человек Ученые подразделяют картины мира на научную, философскую, концептуальную, наивную и художественную В наше время в состав общей НКМ входят ее части различной степени универсальности: Физическая КМ (ФКМ) Астрономическая (АКМ) Биологическая (БКМ) Химическая (ХКМ)

5 слайд

Описание слайда:

Научная картина мира - особая форма теоретического знания, репрезентирующая предмет исследования науки соответственно определенному этапу ее исторического развития, посредством которой интегрируются и систематизируются конкретные знания, полученные в различных областях научного поиска. (Новейший философский словарь) Научная картина мира (НКМ) - система представлений о свойствах и закономерностях действительности (реально существующего мира), построенная в результате обобщения и синтеза научных понятий и принципов, а также методология получения научного знания»(интернет-словарь «Википедия») Научная картина мира - это множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания

6 слайд

Описание слайда:

Исторические типы Их принято персонифицировать по именам трех ученых сыгравших наибольшую роль в происходивших изменениях 1. Аристотелевская (VI-IV века до нашей эры) в результате этой научной революции возникла сама наука, произошло отделение науки от других форм познания и освоения мира, созданы определенные нормы и образцы научного знания. Наиболее полно эта революция отражена в трудах Аристотеля. Он утвердил своеобразный канон организации научного исследования (история вопроса, постановка проблемы, аргументы за и против, обоснование решения), дифференцировал само знание, отделив науки о природе от математики и метафизики

7 слайд

Описание слайда:

2. Ньютоновская научная революция (XVI-XVIII века) Ее исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической, этот переход был обусловлен серией открытий, связанных с именами Н. Коперника, Г. Галилея, И. Кеплера, Р. Декарта, И. Ньютон сформулировал базовые принципы новой научной картины мира в общем виде 3. Эйнштейновская революция (рубеж XIX-XX веков) Ее обусловила серия открытий (открытие сложной структуры атома, явление радиоактивности, дискретного характера электромагнитного излучения и т.д.). В итоге была подорвана, важнейшая предпосылка механистической картины мира – убежденность в том, что с помощью простых сил действующих между неизменными объектами можно объяснить все явления природы

8 слайд

Описание слайда:

Основной проблемой химии является получение веществ с заданными свойствами химия неорганическая органическая исследует свойства химических элементов и их простых соединений: щелочи, кислоты, соли изучает сложные соединения на основе углерода - полимеры, в том числе, созданные человеком: газы, спирты, жиры, сахара

9 слайд

Описание слайда:

1. Период алхимии - с древности до XVI в. нашей эры Характеризуется поисками философского камня, эликсира долголетия, алкагеста (универсального растворителя) 2. Период в течение XVI - XVIII веков Созданы теории Парацельса, теории газов Бойля, Кавендиша и др., теория флогистона Г. Шталя и теория химических элементов Лавуазье. Совершенствовалась прикладная химия, связанная с развитием металлургии, производства стекла и фарфора, искусства перегонки жидкостей и т.д. К концу XVIII века произошло упрочение химии как науки, независимой от других естественных наук

10 слайд

Описание слайда:

3. Первые шестьдесят лет XIX века Характеризуется возникновением и развитием атомной теории Дальтона, атомно-молекулярной теории Авогадро и формированием основных понятий химии: атом, молекула и др 4. С 60-х годов XIX века до наших дней Разработаны периодическая классификация элементов, теория ароматических соединений и стереохимия, электронная теория материи и т.д Расширился диапазон составных частей химии, как неорганическая химия, органическая химия, физическая химия, фармацевтическая химия, химия пищевых продуктов, агрохимия, геохимия, биохимия и т.д

11 слайд

Описание слайда:

«Алхимия» - это арабизированное греческое слово, которое понимается как «сок растений» 3 типа: греко-египетская арабская западно-европейская

12 слайд

Описание слайда:

Философская теория Эмпедокла о четырех элементах Земли (вода, воздух, земля, огонь) Согласно ей различные вещества на Земле различаются только по характеру сочетания этих элементов. Эти четыре элемента могут смешиваться в однородные вещества Важнейшей проблемой алхимии считался поиск философского камня Улучшили процесс очистки золота путем купеляции (нагревая богатую золотом руду со свинцом и селитрой) Выделение серебра путем сплавления руды со свинцом Получила развитие металлургия обыкновенных металлов Известен процесс получения ртути

13 слайд

Описание слайда:

Центром арабской алхимии стал Багдад. Персидский алхимик Джабир ибн Хайям описал нашатырный спирт технологию приготовления свинцовых белил способ перегонки уксуса для получения уксусной кислоты развил учение о нумерологии, связав арабские буквы с названиями веществ. Он предположил, что внутреннюю сущность каждого металла всегда раскрывают два из шести свойств. Например, свинец - холодный и сухой, золото - теплое и влажное. Горючесть он ассоциировал с серой, а «металличность» с ртутью, «идеальным металлом». Согласно учению Джабира, сухие испарения, конденсируясь в земле, дают серу, мокрые - ртуть. Сера и ртуть, соединясь затем в различных отношениях, и образуют семь металлов: железо, олово, свинец, медь, ртуть, серебро и золото. Таким образом, он заложил основы ртутно-серной теории. .

14 слайд

Описание слайда:

Монах-доминиканец Альберт фон Больштедт (1193-1280) – Альберт Великий детально описал свойства мышьяка, высказывал мнение о том, что металлы состоят из ртути, серы, мышьяка и нашатыря. Британский философ ХII в. – Роджер Бэкон (около 1214 - после 1294). возможный изобретатель пороха; писал о потухании веществ без доступа воздуха, писал о способности селитры взрываться с горящим углем. испанский врач Арнальдо де Виллановы (1240-1313) и Раймунд Луллия (1235-1313). попытки получить философский камень и золото (неудачно), изготовили бикарбонат калия. итальянский алхимик кардинал Джованни Фиданца (1121-1274) – Бонавентура получил раствор нашатыря в азотной кислоте. самый видный из алхимиков был испанцем, жил в XIV веке - Гебера описал серную кислоту и как образуется азотная кислота, отметил свойство царской водки воздействовать на золото, считавшееся до тех пор неподдающимся изменению

15 слайд

Описание слайда:

Василий Валентин (XIV в.) открыл серный эфир, соляную кислоту, многие соединения мышьяка и сурьмы, описал способы получения сурьмы и ее медицинское применение Теофраст фон Гогенгейм (Парацельс) (1493-1541) основатель ятрохимии – медицинской химии, достиг некоторого успеха в борьбе с сифилисом, одним из первых разрабатывал лекарственные средства для борьбы с умственными расстройствами, ему приписывают открытие эфира.

16 слайд

Описание слайда:

«Химия - наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения». Изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов. основанием химии выступает двуединая проблема - получение веществ с заданными свойствами (на достижение ее направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию этой задачи направлена научно-исследовательская работа ученых). Эта же проблема является одновременно и системообразующим началом химии.

17 слайд

Описание слайда:

1.В химии появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия). 2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии (изучают химические процессы в живых организмах), молекулярной биологии, космохимии (изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам), геохимии (закономерности поведения химических элементов в земной коре), биогеохимии (изучает процессы перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский).

18 слайд

Описание слайда:

3. В химии появляются принципиально новые методы исследования (рентгеновский структурный анализ, масс-спектроскопия, радиоспектроскопия и др.) Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2)использование антисептических средств для предупреждения инфекции; 3)получение новых, не имеющихся в природе аллопластических материалов-полимеров.

19 слайд

Описание слайда:

В химии большинство химических соединений (96%) - это органические соединения. В их основе лежат 18 элементов (наибольшее распространение имеют всего 6 из них). Химические связи этих элементов прочны (энергоемки) и лабильны. Углерод как никакой другой элемент отвечает этим требованиям. Он совмещает в себе химические противоположности, реализуя их единство. В развитии химии происходит строго закономерное, последовательное появление концептуальных систем. При этом вновь появляющаяся система опирается на предыдущую и включает ее в себя в преобразованном виде. Таким образом, система химии - единая целостность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы знаний, которые находятся между собой в отношениях иерархии.

20 слайд

Описание слайда:

Понятие о химическом элементе Р. Бойль положил начало современному представлению о химическом элементе как о простом теле, переходящем без изменения из состава одного сложного тела в другое. Основоположником системного освоения химических знаний явился Д. И. Менделеев. В 1869 г. открыл периодический закон и разработал Периодическую систему химических элементов, в которой основной характеристикой элементов являются атомные веса. В современном представлении периодический закон выглядит следующим образом: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)»

21 слайд

Описание слайда:

Расположение химических элементов в порядке возрастания атомной массы привело к выявлению периодической зависимости: химические свойства повторяются через каждые семь элементов на восьмой. По химическим свойствам выделились 4 группы: - металлы: К, Мg, Na, Fe – очень активны, легко соединяются с другими веществами, образуя соли, щелочи; - неметаллы: S, Se, Si, Cl – значительно менее активны; в соединениях образуют кислоты; - газы: C, O, H, N – в молекулярном состоянии неактивны, в атомарном – высоко активны; - инертные газы: Ne, Ar, Cr – не вступают в химические соединения с другими веществами.

22 слайд

Описание слайда:

В связи с открытиями в ядерной физике, стало известно, что валентность отражает количество электронов на последней орбитали, а также химическую активность элементов: чем меньше электронов на последней орбитали, - тем более они активны: щелочные и щелочно-земельные металлы – это 1-2 электрона, которые слабо удерживаются ядром и легко теряются атомом. Чем больше электронов на последней орбите, тем пассивнее химический элемент: например, медь, серебро, золото - среди металлов. Неметаллам с нарастающей валентностью свойственно захватывать электроны других элементов. У инертных газов валентность равна 8, и они не вступают в химические реакции. Поэтому их еще называют «благородными».

23 слайд

Описание слайда:

Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов: 1) от элементного и молекулярного состава вещества; 2) от структуры молекул вещества; 3) от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции; 4) от уровня химической организации вещества. Современную картину химических знаний объясняют с позиций четырех концептуальных систем. На рисунке показано последовательное появление новых концепций в химической науке, которые опирались на предыдущие достижения.

24 слайд

Описание слайда:

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и тоже место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. английским радиохимиком Ф. Содди. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы. Наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне). В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент

25 слайд

Описание слайда:

В начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое химическое соединение обладает строго определенным, неизменным составом и тем самым отличается от смесей. Теоретически обосновал закон Пруста Дж. Дальтон в законе кратных отношений. Согласно этому закону состав любого вещества можно было представить как простую формулу, а эквивалентные составные части молекулы - атомы, обозначавшиеся соответствующими символами, - могли замещаться на другие атомы. Химическое соединение состоит из одного, двух и более разных химических элементов. С открытием сложного строения атома стали ясны причины связи атомов, взаимодействующих друг с другом, которые указывают на взаимодействие атомных электрических зарядов, носителями которых оказываются электроны и ядра атомов.

26 слайд

Описание слайда:

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам. Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов. Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

27 слайд

Описание слайда:

Первая половина XIX в Ученые убеждены, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. Сотни тысяч химических соединений, состав которых состоит из нескольких элементов-органогенов (углерода, водорода, кислорода, серы, азота, фосфора). Органогены - элементы, составляющие основу живых систем. В состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.

28 слайд

Описание слайда:

Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любых химических соединений. Основы структурной химии были заложены Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. И.-Я. Берцелиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других.

29 слайд

Описание слайда:

В основе учения находятся химическая термодинамика и кинетика. Основоположник этого направления стал русский химик Н.Н. Семенов, основатель химической физики. Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. Методы управления химическими процессами делятся термодинамические (влияют на смещение химического равновесия реакции) кинетические (влияют на скорость протекания химической реакции). Французский химик Ле Шателье в конце XIX в. сформулировал принцип равновесия, т.е. метод смещения равновесия в сторону образования продуктов реакции. Каждая реакция обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий процесса. Реакции проходят ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее: концентрация температура катализаторы

30 слайд

Описание слайда:

Катализ(1812 г) - ускорение химической реакции в присутствии особых веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Типы: гетерогенный катализ - химическая реакция взаимодействия жидких или газообразных реагентов на поверхности твердого катализатора; гомогенный катализ - химическая реакция в газовой смеси или в жидкости, где растворены катализатор и реагенты; электрокатализ - реакция на поверхности электрода в контакте с раствором и под действием электрического тока; фотокатализ - реакция на поверхности твердого тела или в жидком растворе, стимулируется энергией поглощенного излучения. Применение катализаторов: при производстве маргарина многих пищевых продуктов средств защиты растений

31 слайд

Описание слайда:

Задача органического синтеза – создание веществ со специфическими свойствами, не существующие в природе и обладающие почти неограниченным сроком жизни. Все искусственные полимеры практически не разрушаются в естественных условиях, не теряют своих свойств в течение 50-100 лет. Единственный способ их утилизации – уничтожение: либо сжигание, либо затопление. При сжигании углеводородов, выделяется углекислота – один из основных загрязнителей атмосферы, наряду с метаном и хлорсодержащими веществами. Именно она ответственна за катастрофические процессы в атмосфере, которые находят выражение в эффекте климатических изменений. Новые популярные источники энергии ХХI: биоэтанол, электричество, энергия солнечная батарей, водород и обычная вода.

32 слайд

Описание слайда:

Биоэтанол – это возобновляемый вид топлива. Этанол может добываться различными способами. Например, из зерновых культур: кукурузы, пшеницы, ячменя и корнеплодов - из картофеля, сахарной свеклы и т.п. Сложность заключается в том, что это не совсем рентабельный источник энергии: для его развития необходимы дополнительные территории и вода. Кроме того, добыча этанола в технических целях – угроза пищевой безопасности на планете. Еще одно популярное направление исследований альтернативных источников энергии – возможность использования энергии нашей звезды. В 2009 г. на ежегодной выставке-ярмарке автомобилей японские автопроизводители демонстрировали автомобили, которые работают на основе энергии расщепления молекул воды. Энергия синтеза воды из молекул водорода и кислорода сопровождается выбросом энергии, которая используется в двигателях.

33 слайд

Описание слайда:

Прикладная химия предлагает новые материалы, которые способны заменить металлы, хлопок, лен, шелк, дерево. Французы нашли способ производства бумаги из отходов сахарного производства. Долговечность пластика и синтетических материалов в данном случае – благо, спасение от техногенных катастроф. Силикон, который уже давно и с успехом используют в пластической хирургии и косметологии, японские инженеры рискнули применить для замены металлического корпуса автомобиля. Машины не деформируются, люди не страдают в авариях. Дедерон, лайкра, эластан – материалы, которые активно используют в легкой, текстильной, чулочно-носочной индустрии. Очень популярны гибридные ткани, в которых присутствуют молекулы натуральных материалов: льна, хлопка и синтетические материалы вроде эластанов. Искусственные шелка, искусственные мех, искусственные кожи – все это пути снижения антропогенного давления на животные и растительные виды. Органический синтез и прикладная химия открывает широкую дорогу для замены естественного – искусственным, снижая индустриальный прессинг на среду обитания.

34 слайд

Описание слайда:

Вопрос утилизации пластмасс, твердых промышленных и бытовых отходов решается за счет улучшения дорог. В 1980-е гг. были изобретены и синтезированы первые пластики, способные к биологическому разложению. Канадский химик Джеймс Гуиллер, которого ужаснули груды пустых пластиковых бутылок, разбросанные вдоль итальянских дорог, задумался о возможности их разрушения в естественных условиях и в небольшие сроки. Гуиллер синтезировал первый экологически чистый пластик – биопал, который разлагается бактериями, живущими в почве. В 90-е гг. химики занялись поиском технологий отхода от традиционного сырья для производства пластмасс - нефтепродуктов. В ХХI в. был наконец найден катализатор, позволяющий создавать пластик из апельсиновой кожуры и углекислоты. Он был синтезирован на основе лимонина – органического вещества, входящего в состав цитрусовых. Пластик получил название полилимонин карбонат. Внешне он похож на пенопласт, а его качества не уступают качествам традиционных пластмасс

35 слайд

Описание слайда:

Создание искусственных материалов на основе нанотехнологий. Корень «нано» с древнегреческого переводится как «малыш», «карлик». «Нанотехнологии – это способы манипулирования веществом на атомном и молекулярном уровне, в результате чего оно приобретает принципиально новые, уникальные химические, физические и биологические свойства». Один из опытов по наноманипулированию датируется уже IХ столетием. Это изобретение знаменитой дамасской стали, не заменимой в жестоких сражениях Средневековья. Сегодня нанопроизводства заняты созданием сверхтонких, сверхпрочных материалов, которые можно использовать на нашей планете и в космическом пространстве. Лидеры в создании наноматериалов – США и Европа.

36 слайд

Описание слайда:

Успехи в синтезе наноматериалов российскими учеными Наноструктурированные композитные материалы для изготовления арф высокого качества, которые гораздо дешевле в производстве, чем традиционные музыкальные инструменты. Очень возможно, что драгоценные скрипки, созданные искусными руками Гварнери и Страдивари, также имеют отношение к нанопроизводству. Радиоэкранирующие и радиозащищающие материалы на основе кремния, которые отражают вредные излучения и могут быть использованы для защиты военной техники, экранируют более 99% электромагнитного излучения. Наноалмазы. Это искусственные материалы, содержащие алмазы, – твердые, стойкие к коррозии, к износу. Их можно использовать в нефтяной и металлургической промышленности для бурения скважин и при резке металла. Наноалмазы добавляют в смазочно-охлаждающие жидкости в качестве катализаторов химических реакций.

37 слайд

Описание слайда:

ВЫВОДЫ Химическая наука на ее высшем эволюционном уровне углубляет представления о мире. Концепции эволюционной химии, в том числе о химической эволюции на Земле, о самоорганизации и самосовершенствовании химических процессов, о переходе от химической эволюции к биогенезу, являются убедительным аргументом, подтверждающим научное понимание происхождения жизни во Вселенной. Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы. Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет. Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека.

Лекция 10. Система химии.

1. Основная проблема химии. Концептуальные системы химии.

2. Учение о составе вещества. Решение проблем химического элемента и химического соединения. Периодическая система элементов.

3. Структурная химия.

4. Кинетическая химия.

5. Эволюционная химия.

Основная проблема химии как науки. Концептуальные системы химии. Д. И. Менделеев называл химию «наукой о химических элементах и их соединениях». В одних учебниках химию определяют как «науку о веществах и их превращениях», в других - как “науку, изучающую процессы качественного превращения веществ” и т.д. Все эти определения по своему хороши, но они не учитывают тот факт, чтохимия является не просто суммой знаний о веществах, а упорядоченной, постоянно развивающейся системой знаний , имеющей определенное социальное назначение и свое место в ряду других наук.

Вся история развития химии является закономерным процессом смены способов решения ее основной проблемы. Все химические знания, которые были приобретены в течение многих веко, подчинены единственной главной задаче химии - задаче получения веществ с необходимыми свойствами .

Итак, основная двуединая проблема химии - это:

1.Получение веществ с заданными свойствами - производственная задача.

2. Выявление способов управления свойствами вещества - задача научного исследования.

По мере развития науки изменялись представления об организации материи, составе веществ, структуре молекул, были получены новые данные о самих химических процессах, что, конечно же, в корне изменяло и способы синтеза новых соединений, и методы исследования их свойств. Существует только четыре способа решения этой проблемы , которые связаны, прежде всего, с наличием всего четырех основных природных факторов, от которых зависят свойства получаемых веществ:

1. Состав вещества (элементарный, молекулярный).

2. Структура молекул.

3. Термодинамические и кинетические условия химической реакции, в процессе которой это вещество получается.

4. Уровень организации вещества.

Последовательное появление сначала первого, затем второго, третьего и, наконец, четвертого способов решения основной проблемы химии приводит к последовательному появлению и сосуществованию четырех уровней развития химических знаний, или, как принято теперь их называть, четырех концептуальных систем , находящихся в отношениях иерархии, т. е. субординации. В системе всей химии они являются подсистемами так же как сама химия представляет собой подсистему всего Естествознания в целом. Существование всего четырех способов решения основной проблемы химии нашло свое отражение в делении Системы химии на четыре подсистемы.

Таким образом, в развитии химии происходит не смена, а строго закономерное, последо­ва­тельное появление концептуальных систем. При этом каждая вновь появляю­щаяся система не отрицает предыдущую, а, наоборот, опирается на нее и включает в себя в преобразованном виде.

Подводя некоторые итоги, можно дать следующее определение: Система химии -единая целост­ность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концепту­альные системы химических знаний, которые находятся между собой в отношениях иерархии .

На каждом из четырех исторических этапов добычи химических знаний возникали свои задачи, которые требовали решения.

Первый этап развития химии - XVII в: Учение о составе вещества. Основные проблемы, стоявшие перед учеными на самом первом этапе - этапеизучения состава вещества :

1.Проблема химического элемента.

2.Проблема химического соединения.

3.Проблема создания новых материалов, в состав которых входят вновь открываемые химические элементы.

Действенный способ решения проблемы происхождения свойств вещества появился во второй половине XVII в. в работах английского ученогоРоберта Бойля . Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких материальных элементов эти тела составлены.

Бойль тем самым способствовал решению основной проблемы химии посредством установления взаимосвязи:

СОСТАВ ВЕЩЕСТВА ---------> СВОЙСТВА ВЕЩЕСТВА

Этот способ положил начало учению о составе веществ, которое явилось первым уровнем научных химических знаний . Вплоть до первой половины XIX в. учение о составе веществ представляло собой всю тогдашнюю химию.

Решение проблемы химического элемента. Исторические корни решения этой проблемы уходят в глубокую древность. В Древней Греции возникают первые атомистические теории о строении мира и в противовес им - представления об элементах; свойствах и элементах, - качествах, подхваченных позже ложными учениями алхимиков.

Р.Бойль положил начало современному представлению о химическом элементе как о «простом» теле или как о пределе химического разложения вещества. Химики, стремясь получить «простые вещества», пользовались при этом самым распространенным в то время методом - прокаливанием «сложных веществ». Прокаливание же приводило к окалине, которую и принимали за новый элемент. Соответственно, металлы - железо, например, принимали за сложные тела, состоящие из соответствующего элемента и универсального «невесомого тела» -флогистона (флогистос - греч. зажженный). Теория флогистона (ложная по своей сути) была первой научной химической теорией и послужила толчком к множеству исследований.

В 1680-1760 гг. появились точные количественные методы анализа вещества, а они, в свою очередь, способствовали открытию истинных химических элементов. В это время были открытыфосфор, кобальт, никель, водород, фтор, азот, хлор и марганец .

В 1772-1776 гг. одновременно в Швеции, Англии и Франции был открыт кислород . Во Франции его первооткрывателем был замечательный химикА.Л. Лавуазье (1743-1794 гг.). Он установил роль кислорода в образовании кислот, оксидов и воды, опроверг теорию флогистона и создал принципиально новую теорию химии. Ему принадлежала также первая попытка систематизации химических элементов, которая в дальнейшем была исправлена Д. И. Менделеевым.

Периодический закон и периодическая система химических элементов Д.И. Менделеева. Русский химик Д. И. Менделеев сделал это открытие в 1869 г., совершив революцию в естествознании, т.к. оно не просто устанавливало связь между химическими и физическими свойствами отдельных элементов, но и взаимную связь между всеми химическими элементами. Группы и ряды периодической системы стали надежной основой для выявления семейств родственных элементов.

N . B ! Первым практическим применением периодического закона было исправление величин валентности и атомных весов некоторых элементов, для которых в то время принимались неверные значения. Это относилось, в частности, к индию, церию, другим редкоземельным элементам: торию, урану.

Основным принципом, по которому Менделеев строил свою таблицу, было размещение элементов в порядке возрастания их атомных весов. Основываясь на валентности и химических свойствах элементов, Менделеев расположил все элементы по 8 группам, в каждой из которых размещались элементы со сходными свойствами.

Причина периодических изменений физических и химических свойств элементов кроется в периодичности строения электронных оболочек атомов .

N . B ! В начале каждого периода валентные электроны находятся на s-подуровнях соответствующих уровней энергии в атомах. Затем в малых периодах происходит заполнение электронами s и p-подуровней, а в больших периодах также и d-подуровней. В VI и VII периодах, кроме того, наблюдается заполнение f-подуровней. Атомы инертных газов содержат наружные электроны всегда на полностью сформированных s и p-подуровнях. Таким образом, химические элементы одинаковых подгрупп периодической системы характеризуются аналогичным строением электронных оболочек атома.

Одними из наиболее важных свойств атомов, связанных со строением их электронных оболочек, являются эффективные атомные и ионные радиусы. Оказывается, что они также периодически изменяются в зависимости от величины атомного номера элемента. Для элементов одного периода по мере увеличения порядкового номера сначала наблюдается уменьшение атомных радиусов, а затем, к концу периода, их увеличение. Это необычное физическое свойство находит простое объяснение, основанное на знании строения внешней электронной оболочки атомов, принадлежащих одному периоду: все дело в электростатике .

Но самое главное заключалось в том, что таблица Менделеева не просто давала объяснение физическим свойствам элементов, а ставила им в соответствие и их химические свойства. Основным постулатом таблицы являлось то, что валентность химического элемента определяется числом электронов на внешней электронной оболочке (эти электроны так и называются -валентные электроны ).

Важная роль периодического закона заключается в том, что в нем устанавливается связь между строением атомов и влиянием этого строения на физические и химические свойства элементов.

Решение проблемы химического соединения. Начало решению этой проблемы было положено благодаря работам французского химикаЖ. Пруста , который в 1801-1808 гг. установилзакон постоянства состава , согласнокоторомулюбое индивидуальное химическое соединение обладает строго определенным, неизменным составом - прочным притяжением составных частей (атомов) и тем самым отличается от смесей.

Теоретическое обоснование закона Пруста было дано англичанином Дж. Дальтоном , являющимся автором другого основополагающего закона в учении о составе веществ -закона кратных отношений . Он показал, что все вещества состоят из молекул, а все молекулы, в свою очередь, - из атомов, и что состав любого вещества можно представить себе как простую формулу типа АВ, АВ2, А2 В3 и т.д., где символы А и В обозначают названия двух атомов, из которых состоит молекула. Согласно этому закону эквивалентов «составные части молекулы» - атомы А и В могут замещаться на другие атомы - С и D, например, согласно реакциям:

АВ + С --> АС + В или

А2В3 + 3D ---> А2D3 + 3В

Закон кратных отношений Дальтона (1803 г.) гласит:Если определенное количество одного элемента вступает в соединение с другим элементом в нескольких весовых отношениях, то количества второго элемента относятся между собой как целые числа.

Молекулярная теория строения вещества позволила по-новому взглянуть на процессы, происходящие в газовой фазе, и дала начало новой науке, стоящей на стыке химии и физики - молекулярной физике . Настоящей сенсацией стало откры­тиезакона Авогадро в 1811г.Итальянский ученыйАмадео Авогадро (1776-1856 гг.) установил, чтопри одинаковых физических условиях (давлении и температуре) равные объемы различных газов содержат равное число молекул . Другими словами, это означает, чтограмм-молекула любого газа при одинаковой температуре и давлении занимает один и тот же объем.

Однако, развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав , существуют еще и соединенияпеременного состава - и это явилось причиной пересмотра представлений о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно, но теперь к молекулам стали относить и такие необычные квантово-механические системы, такие как ионные, атомные и металлическиемонокристаллы , а такжеполимеры , образованные за счет водородных связей.

В результате применения физических методов исследования вещества стало ясно, что свойства реального тела определяются не столько тем, постоянен или не постоянен состав химического соединения, а скорее физической природой химизма , т.е. природой тех сил, которые заставляют несколько атомов объединяться в одну молекулу. Поэтому теперь подхимическим соединением понимаютопределенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой - молекулу , комплекс, монокристалл или иной агрегат. Это более широкое понятие, чем понятие «сложное вещество». Действительно, ведь всем известны химические соединения, состоящие не из разных, а из одинаковых элементов. Это молекулы водорода, кислорода, хлора, графита, алмаза и т.д.

Особое положение в ряду молекулярных частиц занимают макромоле­кулы полимеров . Они содержат большое число повторяющихся, химически связанных друг с другом в единое целое структурных единиц -фрагментов мономерных молекул , обладающих одинаковыми химическими свойствами.

Дальнейшее усложнение химической организации материи идет по пути образования более сложной совокупности взаимодействующих атомных и молекулярных частиц, так называемых молекулярных ассоциатов и агрегатов , а также их комбинаций. При образовании агрегатов изменяется фазовое состояние системы, чего не происходит при образовании ассоциатов.Ф азовое состояние -это основное физическое состояние, в котором может существовать любое вещество (газ, жидкость, твердое тело).

Проблема создания новых материалов . Природа щедро «разбросала» свои материальные ресурсы по всей планете. Но вот какую странную закономерность обнаружили ученые: оказывается, чаще всего в своей деятельности человек использует те вещества, запасы которых в природе ограничены.

Поэтому в настоящее время перед учеными-химиками стоят три задачи:

1. Приведение в соответствие практики использования химических элементов в производстве с их реальными ресурсами в природе.

2. Последовательная замена металлов различными видами керамики.

3. Расширение производства элементоорганических соединений на базе органического синтеза. Элементоорганические соединени я -это соединения, в состав которых входят как органические элементы (углерод, водород, сера, азот, кислород), так и производ­ные ряда других химических элементов: кремния, фтора, магния, кальция, цинка, натрия, лития и т.д.

Предлагается сосредоточить внимание на увеличении использования на производстве таких элементов как алюминий, магний, кальций, кремний. В природе эти элементы встречаются довольно часто, и их добыча не составляет особого труда. Кроме того, использование этих веществ, составленных из наиболее часто встречающихся природных элементов, приведет к меньшему загрязнению окружающей среды отходами, - проблеме, так остро ощущаемой всеми в настоящее время.

Возросшая необходимость замены металлов керамикой вызвана тем, что производство керамики легче и экономически выгоднее и, кроме того, на некоторых производствах она просто не может быть заменена металлами. Химики научились получать огнеупорную, термостойкую, химически стойкую, высокотвердую керамику, а также керамику для электротехники. В последнее время было обнаружено удивительное свойство некоторых керамических изделий обладать высокотемпера­турной сверхпроводимостью, т.е. сверхпроводимостью при температурах выше температуры кипения азота. Открытию этого уникального физического свойства способствовали работы химиков по созданию новой керамики на основе комплексов с барием, лантаном и медью, взятых в едином комплексе.

Химия элементооргани­ческих материалов с применением крем­ния (кремнийорганическая химия) лежит в основе создания производства многих полимеров, обладающих ценными свойствами и незаменимых в авиации и энергети­ке. А фторорганичес­кие соединения обладают исключительной устойчивос­тью (даже в кислотах и щелочах) особой поверхностной активностью и поэтому могут переносить, например, кислород как молекула гемоглобина! Фторорганичес­кие соединения активно используются в медицине для создания всевозможных покрытий и т.д.

Решение практических задач, стоящих перед химиками в настоящее время сопряжено с синтезом новых веществ и анализом их химического состава. Поэтому, как и много лет тому назад, проблема состава веществ остается в химии по-прежнему актуальной.

Второй этап развития химии как науки - XIX в: Структурная химия.

В 1820 - 1830 гг. мануфактурная стадия производства с ее ручной техникой сменилась фабричной стадией. На производстве появились новые машины, возникла потребность в поиске новых сырьевых материалов для использования в промышленности. В химическом производстве стала преобладать переработка огромных масс веществ растительного и животного происхождения, качественное разнообразие которых было потрясающе велико, а состав однообразен: углерод, водород, кислород, сера, азот, фосфор. Значит, свойства веществ, определяется не одним только составом - сделали вывод химики.

Химики выяснили, что свойства веществ, а значит и их качествен­ное разнообразие обусловливается не только их составом, но и структурой молекул. Если знание состава вещества отвечает на вопрос о том, из каких химических элементов состоит молекула данного вещества , тознание структуры вещества дает представление о пространственном расположении атомов в этой самой молекуле.

Вместе с тем стало ясно, что не все атомы, входящие в состав моле­кулы данного вещества одинаково хорошо вступают во взаимодействие с атомами других молекул. Каждую молекулу можно условно подразделить на несколько так называемых функциональных или реактивных блоков, в которые входят группы атомов, просто отдельные атомы или даже отдельные химические связи. Каждая из таких структур обладает своей уникальной способностью вступать в химические реакции, т.е. своей реакционной способностью .

Второй уровень развития химических знаний получил условное название структурная химия .Главным достижением этого этапа можно было назвать установление связи между структурой молекулы и функциональной активностью соединения:

СТРУКТУРА МОЛЕКУЛЫ ---> ФУНКЦИЯ (РЕАКЦИОННАЯ СПОСОБНОСТЬ)

Таким образом, познание структуры молекул перевело химию на второй уровень развития химических знаний и способствовало превращению химии из преимущественно аналитической науки в наукусинтетическую . Возникла такжетехнология органических веществ , которой ранее не было.

Эволюция понятия «структура» в химии. Согласно теории, выдвинутойДж. Дальтоном, любое химическое вещество представляет собой совокупность молекул, обладающих строго определенным качественным и количественным составом, т. е. состоящих из определенного количества атомов одного, двух или трех химических элементов. Теория строения вещества Дж. Дальтона отвечала на вопрос:как можно отличить индивидуальное вещество от смесей веществ , но она не давала ответа на множество других вопросов: каким образом объединяются атомы в молекулу, существует ли какая-то упорядоченность в расположении атомов в молекуле или они объединены как попало, случайно?

На эти вопросы попытался дать ответ шведский химик И.Я. Берцелиус , живший в первой половине XIX в. И. Я. Берцелиус полагал, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Он предложил новуюмодель атома в виде электрического диполя . И.Я. Берцелиус выдвинул гипотезу, согласно которойвсе атомы разных химических элементов обладают различной электроотрицательностью и расположил их в своеобразный ряд по мере ее увеличения .

N . B ! И.Я. Берцелиус на основании определения данного им процентного состава многих веществ и поиска элементарных стехиометрических закономернос­тей, а также изучения разложения сложных веществ в растворе под действием электрического тока, задался вопросом: что влияет на знак и величину электрического заряда конкретного вещества? Почему существуют электроположительные и электроотрицательные вещества? В чем различие в строении молекул кислоты и щелочи или щелочи и нейтральной соли?

В 1840 г. в работах французского ученого Ш. Жерара было показано, что структуры И. Я. Берцелиуса справедливы не во всех случаях: есть масса веществ, молекулы которых невозможно разложить на отдельные атомы под действием электрического тока, они представляют как бы единую целую систему и именно такуюнеделимую систему взаимосвязанных друг с другом атомов Ш. Жерар и предлагал называтьмолекулой . Он разработал теорию типов органических соединений.

В 1857 г. немецкий химик А. Кекуле обнародовал свои наблюдения о свойствах отдельных элементов, которые могут замещать атомы водорода в ряде соединений. Он пришел к выводу о том, что некоторые из них могут замещать три атома водорода, другие же - только два или даже один. А.Кекуле также установил, что «один атом углерода... эквивалентен четырем атомам водорода». Это были основополагающие положениятеории валентности веществ .

А. Кекуле ввел в обиход новый химический термин сродство , который и обозначал количество атомов водорода, которое может заместить данный химический элемент. Он приписал всем элементам соответственно три, две или одну единицу сродства. Углерод же находился при этом в необычном положении - его атом обладал четырьмя единицами сродства.Число единиц сродства, присущее данному химическому элементу ученый назвал валентностью атома .

При объединении атомов в молекулу происходит замыкание свободных единиц сродства.

Понятие структура молекулы с легкой руки А.Кекуле свелось к построению наглядных формульных схем, которые служили химикам руководством в их практической работе, конкретным указанием на то, какие исходные вещества следует брать для того, чтобы получить необходимый химический продукт.

N . B ! Схемы А. Кекуле, однако, не всегда можно было осуществить на практике: хорошо продуманная (или придуманная) реакция не хотела протекать согласно красивой схеме. Это происходило потому, что формульный схематизм не учитывал реакционную способность веществ, вступающих в химическое взаимодействие друг с другом.

Ответы на волнующие практических химиков вопросы дала теория химического строения русского ученого Александра Михайловича Бутлерова. Бутлеров, так же как и Кекуле, признавал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но одновременно с этим он указывал на важность того, с каким «напряжением, большей или меньшей энергией (это сродство) связывает вещества между собой».

Теория А. М. Бутлерова стала для химиков руководством в их практической деятельности. Позже она нашла свое подтверждение и физическое обоснование в квантовой механике.

Химическая связь. Химической связью называется взаимодействие между атомами элементов, обуславливающее их соединение в молекулы и кристаллы.

Тип связи определяется характером физического взаимодействия атомно-молекулярных частиц друг с другом. Фундаментальную теорию химических связей создал в 30-е годы ХХ века американский химикЛайнус Полинг .

В настоящее время понятие «химическая связь» стало более широким. Теперь подхимической связью понимается такойвид взаимодействия не просто между отдельными атомами, а иногда и между атомно-молекулярными частицами, который обусловлен совместным использованием их электронов . При этом имеется в виду, что такое обобществление электронов взаимодействую­щими частицами может изменяться в широких пределах. Существуютковалентная (полярная, неполярная), водородная и ионная (ионно-ковалентная) связи, а также металлическая связь .

Ионная связь образуется в том случае, когда, объединяясь в одну молекулу, один из атомов теряет электроны со своей внешней оболочки (катион), а другой их приобретает (анион) противоположно заряженные ионы притягиваются друг к другу, образуя прочные связи. Ионные соединения – как правило, твердые вещества, имеющие очень высокую температуру плавления (соли, щелочи, напр., поваренная соль).

Ковалентная связь образуется в результате электронной пары, принадлежащей одновременно обоим атомам, создающим молекулу вещества. Поскольку такие молекулы удерживаются слабыми силами, они неустойчивы и существуют в виде жидкостей или газов с низкими температурами плавления и кипения (кислород, бутан).

Водородная связь обусловлена поляризацией ковалентных связей , когда совместные электроны большую часть времени находятся у атома элемента, связанного с атомом водорода. В результате такой атом получает небольшой отрицательный заряд, что делает соединения с водородными связями более крепкими по сравнению с другими ковалентными соединениями (вода).

Металлические связи обусловлены свободным перемещением электронов внешних оболочек атомов металлов . Атомы в металлах выстраиваются в точно подогнанные друг к другу ряды, удерживаемые вместе электронным полем.

Благодаря развитию структурных представлений в 1860-1880 гг. в химии появился термин органический синтез , обозначавший не только действия по получению новых органических веществ, но и целую область науки, названную так в противоположность всеобщему увлечению анализом природных веществ.

Итак, под валентностью атомных частиц понимается ихсвойство вступать в химическое взаимодействие, количественной мерой которого является суммарное число неспаренных электронов, неподеленных электронных пар и вакантных орбиталей, участвующих в образовании химических связей. Валентность атомной частички не является постоянной величиной и может изменяться от единицы до некоторого максимального значения в зависимости от природы частиц-партнеров и условий образования химического соединения.

Под понятием структура понимаютустойчивую упорядоченность качественно неизменной системы.

Под молекулярной структурой понимаютсочетание ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов . Молекулярную структуру подразделяют наатомную (геометрическую) иэлектронную .

В первом приближенииподатомной структурой следует пониматьустойчивую совокупность ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом.

Третий этап развития химии как науки - первая половина XX в: Учение о химических процессах - кинетическая химия.

В связи с развитием техники и именно в это времяхимия становится наукой уже не только и не столько о веществах, сколько наукой о процессах и механизмах изменения веществ.

Интенсивное развитие автомобильной промышленности, авиации, энергетики и приборостроения в начале нашего века требовало качественного топлива для работы моторов. Специальные высокопрочные каучуки для шин автомобилей, пластмассы для облегчения их веса, всевозможные полимеры и полупроводники,- все это было необходимо получать в больших количествах, но, увы, развитие химических навыков не соответствовало запросам производства.

Дело в том, что сама по себе химическая реакция - вещь достаточно капризная. Взаимодействие веществ в ходе реакции приводит к изменению состава вещества. Для этого должна быть разрушена одна комбинация атомов и создана другая. Для разрушения старого соединения необходимо затратить энергию. Образование нового соединения, как правило, сопровождается выделением энергии.

Химические реакции описываются уравнениями, основанными на законе сохранения вещества . Согласно этому закону, полная масса веществ, вступивших в реакцию, должна точно соответствовать массе образовавшихся веществ. Для расчетов массы используется счетная единица – моль, содержит одинаковое количество частиц (6 10 23 , число Авогадро)

Учение о химических процессах. Методы управления химическим процессом. Учение о химических процессах - это такая область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. В основе этого учения находятсяхимическая термодинамика и кинетика , поэтому все это учение о химических процессах в равной степени относится как к химии, так и к физике.

Существует большое количество решаемых проблем в связи с созданием учения о химических процессах. Подробное их описание можно найти в любом современном учебнике по физической химии. Но, пожалуй, одной из самых основных проблем являлась задача создания методов, позволяющих управлять химическими процессами.

В самом общем виде все методы управления можно подразделить на две большие группы: термодинамические и кинетические. Первая группа - термодинамические методы - этометоды, влияющие на смещение химического равновесия реакции ; вторая группа - кинетические методы -это методы, влияющие на скорость протекания реакции.

В 1884 г. появляется книга выдающегося голландского химика Я. Вант-Гоффа , в которой он обосновал законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. В том же году французский химикА. Ле-Шателье сформулировал свой знаменитыйпринцип подвижного равновесия , вооружив химиков методами смещения равновесия в сторону образования продуктов реакции. Основными управляющими рычагами в данном случае выступалитемпература, давление и концентрация реагирующих веществ. Поэтому эти методы управления и получили свое название -термодинамические .

Вспомним, что любая химическая реакция обратима. Например, реакция типа:

AB + CD <=> AC + BD

Обратимость реакций служит основанием равновесия между прямой и обратной реакциями. На практике равновесие смещается в ту или иную сторону. Для того, чтобы химическая реакция пошла в сторону увеличения продуктов реакции АС и BD, необходимо либо увеличить концентрацию веществ AB и CD, либо изменить температуру или давление.

Нотермодинамические методы позволяли управлять тольконаправлением реакций, а не их скоростями.Управлением скоростью химических реакций в зависимости от различных факторов занимается специальная наука -химическая кинетика . На скорость химической реакции может влиять очень многое, даже стенки сосуда, в котором протекает реакция.

Третий способ решения основной проблемы, учитывающий всю сложность организации химических процессов и обеспечивший экономически приемлемую производительность этих процессов в химических реакторах, может быть представлен схемой:

ОРГАНИЗАЦИЯ ХИМИЧЕСКОГО ---> ПРОИЗВОДИТЕЛЬНОСТЬ

ПРОЦЕССА В РЕАКТОРЕ РЕАКТОРА

Катализ и химия экстремальных состояний. В 1812 г. русским академикомК.С.Кирхгофом было открыто явлениехимического катализа .Катализ представляет собой наиболее общий и распространенный способ проведения химических реакций, особенность которого состоит в активации молекул реагента при их контакте с катализатором . При этом происходит как бы «расслабление» химических связей в исходном веществе, «растаскивание» его на отдельные части, которые затем легче вступают во взаимодействие друг с другом.

Нестационарная кинетика. Развитие представлений об эволюции систем. В 1970 годы было обнаружено много химических систем, в которых использовались катализаторы, в которых с течением времени все происходило наоборот, - процесс не стабилизировался, как обычно, а становилсянестационар­ным . Было открыто несколько типовавтоколебательных химических реакций , в которых с течением времени происходят периодические изменения выхода продуктов реакции. Другими словами, необходимый продукт химической реакции то выделяется в большом количестве, то, напротив, реакция почти не идет или даже изменяет свое направление, а затем все это повторяется вновь. Оказалось, что в ряде случаев общее количество вещества, получаемое в ходе такойнестабильной химической реакции, даже превышает то количество вещества, которое выделялось бы в ходе реакции, если бы она проходиластационарно или, т.е. имела быпостоянную скорость .

Изучение нестационарной кинетики началось недавно. Но уже есть и практические результаты. С ее помощью были исследованы некоторые энергетически сопряженные процессы, т.е. такие химические процессы, в которых принимают участие сразу несколько реакций, обменивающихся энергией друг с другом. Нестационарные химические процессы были обнаружены и в живой природе.

Четвертый этап развития химии как науки - вторая половина XX в: Эволюционная химия. В 1960 - 1979 г. г. появился новый способ решения основной проблемы химии, который получил названиеэволюционная химия . В основе этого способа лежит принцип использования в процессах получения химических продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем.

Таким образом, четвертый этап развития химии, который продолжает­ся и до настоящего времени,устанавливает связь самоорганизации системы реагентов с поведением этой системы:

САМООРГАНИЗАЦИЯ -----> ПОВЕДЕНИЕ СИСТЕМЫ РЕАГЕНТОВ СИСТЕМЫ РЕАГЕНТОВ

Эволюционные проблемы химии. Начало эволюционной химии связывают с 1950-1960 гг. Подэволюционными проблемами следует пониматьпроблемы синтеза новых сложных, высокоорганизо­ванных соединений без участия человека.

Теория химической эволюции и биогенеза А.П.Руденко. В 1960-х годах были отмечены случаи самосовершенствования некоторых химических катализаторов в ходе химической реакции. Обычные катализаторы со временем (как и все на свете) стареют и изнашиваются. Но химикам удалось обнаружить такие катализаторы, которые не только не старели, а, напротив, «молодели» с каждой химической реакцией. Ответ на этот вопрос попыталась дать теория химической эволюции и биогенеза, предложенная ученым мира в 1964 г. русским профессоромА. П. Руденко . Сущность этой теории состоит в том, что химическая эволюция представляет собойсаморазвитие каталитических систем . В ходе реакции происходит отбор тех каталитических центров, которые обладают наибольшей активностью (основной закон химической эволюции):Эволюционные изменения катализатора происходят в том направлении, где проявляется его максимальная активность. Саморазвитие систем происходит за счет постоянного поглощения катализаторами потока энергии, которая выделяется в ходе самой химической реакции, поэтому эволюционируют каталитические системы с большей энергией. Такие системы разрушают химическое равновесие и в результате являются инструментом отбора наиболее устойчивых эволюционных изменений в катализаторе.

Изучение строения и функционирования ферментов в живой природе - это такая ступень химического познания, которая откроет в дальнейшем создание принципиально новых химических технологий.

Несмотря на то, что химия в настоящее время все еще далека от совершенства, которым обладает «лаборатория живого организма», пути к этому идеалу намечены. Сегодня химики пришли к выводу, что используя те же принципы, на которыхпостроена химия живых организмов, в будущем (не повторяя в точности природу) можно будет «построить» принципиально новую химию, новое управление химическими процессами - так, как это происходит в любой живой клетке. Химики надеются получить катализаторы нового поколения, которые бы позволили создавать, например, необычные преобразователи солнечного света.

Ученые стремятся создавать промышленные аналоги химических процессов, происходящих в живой природе. Они исследуют опыт работы биохимических катализаторов и создают такие катализаторы в лабораторных условиях. Особой сложностью работы с биохимическими катализаторами - ферментами , является то обстоятельство, что они очень неустойчивы при хранении и быстро портятся, теряя свою активность. Поэтому химики долгое время работали над созданием стабилизации ферментови в результате научились получать так называемыеиммобилизованные ферменты - этоферменты, выделенные из живого организма и прикреплен­ные к твердой поверхности путем их адсорбции . Такие биокатализаторы очень стабильны и устойчивы в химических реакциях и их можно использовать многократно. Основоположникомхимии иммобилизованных систем является русский химикИ. В. Березин.

    Среди перспективных направлений химии XXIвека особый интерес вызывают:

    Химия мозга

    Макрохимия Земли

    Когерентная химия

    Спиновая химия и химическая радиофизика

    Химия экстремальных состояний

    Холодный синтез

    Физика химических реакций.

Отсутствие в химии теоретических основ, позволяющих точно предсказывать и рассчитывать протекание химических реакций, не позволяло ставить её в ряд с науками, обосновывающими само бытие.

Именно сведение химических процессов к совокупности физических как бы прямо указывало на ненужность химических воззрений при анализе первооснов бытия. Кстати, когда химики пытались защитить специфику своей науки доводами о статистическом характере химических взаимодействий в отличие большинства взаимодействий в физике, обусловленных динамическими законами, физики тут же указывали на статистическую физику, которая якобы более полно описывает подобные процессы.

Специфика химии терялась, хотя наличие строгой геометрии связей взаимодействующих частиц в химических процессах вносило в статистическое рассмотрение специфический для химии информационный аспект.

Анализ сущности информационно-фазового состояния материальных систем резко подчёркивает информационный характер химических взаимодействий. Вода как химическая среда, оказавшись первым примером информационно-фазового состояния материальных систем, соединила в себе два состояния: жидкое и информационно-фазовое именно по причине близости химических взаимодействий к информационным.

Вакуум как электромагнитная среда физического пространства, проявившая свойства информационно-фазового состояния, скорее всего, ближе к среде, в которой протекают процессы, по форме напоминающие химические. Давно замеченное терминологическое совпадение при описании соответствующих процессов превращения частиц в химии и в физике элементарных частиц как реакций дополнительно подчёркивает роль химических представлений в физике.

Предполагаемая взаимосвязь между информационно-фазовыми состояниями водной среды и электромагнитной среды физического вакуума свидетельствует о сопутствующих химическим процессам изменениях в физическом вакууме, что, вероятно, и ощущал Д.И. Менделеев в своих экспериментах.



Следовательно, в вопросе о природе мирового эфира химия в каких-то моментах выступает даже определяющей по отношению к физическому воззрению.

Поэтому говорить о приоритете физических или химических представлений в выработке научной картины мира, вероятно, не стоит.

Открытие информационно-фазового состояния материальных систем существенно дополняет и во многом изменяет существующие представления о мироустройстве.

Философско-методологический анализ открытия информационно-фазового состояния материальных систем с учётом новейших естественнонаучных представлений в области физики, химии и биологии показывает, что современная научная картина мира представляет наше бытие как информационно-управляемый материальный мир, позволяющий по своей структуре осуществлять его бесконечное познание любому разумному объекту, достигшему соответствующего уровня развития, т.е. осознавшему своё подключение к единому информационному полю материальных систем.

Не менее важную роль в формировании новой научной картины мира играет теория самоорганизации. Особенно ее интересует согласованное состояние процессов самоорганизации в сложных системах различной природы.

Довольно долго способными к самоорганизации считали только живые системы, а объекты неживой природы, как полагали, если и эволюционируют, то лишь в сторону хаоса и беспорядка. Оставалось непонятным, как из подобного рода систем могли возникнуть объекты живой природы, способные к самоорганизации, и как взаимодействует живая и неживая материя.

Современные концепции самоорганизации позволяют разрешить противоречие между теорией биологической эволюции и термодинамикой. Теперь эти теории не исключают, а предполагают друг друга, если классическую термодинамику рассматривать как своего рода частный случай более общей теории - термодинамики неравновесных процессов. Впервые возникает научно обоснованная возможность преодолеть традиционный разрыв между представлениями о живой и неживой природе. Жизнь больше не выглядит как островок сопротивления второму началу термодинамики.

В свете этих идей и открытий новую актуальность обрела концепция биосферы и ноосферы В. Вернадского. В ней жизнь предстает как целостный эволюционный процесс (физический, геохимический, биологический), заключенный как особая составляющая в космическую эволюцию. Осознание этой целостности во многом определяет стратегию дальнейшего развития человечества. Проблемы коэволюции человека и биосферы постепенно становятся доминирующими не только в современной науке и философии, но и в стратегии практической деятельности человека.

Специальные научные картины мира со второй половины ХХ века значительно снижают уровень своей автономности и превращаются в аспекты и фрагменты целостной общенаучной картины мира. Они соединяются в блоки этой картины, характеризующие неживую природу, органический мир и социальную жизнь и реализуют (каждая в своей области) идеи универсального эволюционизма...

На первый взгляд, как бы повторяется ситуация, характерная для ранних этапов развития новоевропейской науки, когда механическая картина мира, функционируя как общенаучная, обеспечивала синтез достижений науки XVII - XVIII столетий. Но сходство лишь внешнее. Современная научная картина мира основана не на стремлении к унификации всех областей знания, их редукции к принципам одной какой-либо науки, а на единстве и многообразии разных наук. Известно, что специальные картины мира, как и самостоятельные научные дисциплины, существовали не всегда. Их не было в период становления естествознания. Возникнув в эпоху дифференциации науки, они затем постепенно начинают утрачивать самостоятельность, превращаясь в аспекты или фрагменты современной общенаучной картины мира.

СПИСОК ЛИТЕРАТУРА

1. Что такое научная картина мира? Моисеев В.И., 1999

2. Социологические аспекты изучения научной картины мира. А.В.Шкурко // Наука и повседневность, Вып.8.: Наука и национальная культура, – Нижний Новгород, 2006

3. Картина мира и ее виды. Погосова К.О..

4. Астрономия и современная картина мира (Ф.А. Цицин Астрономическая картина мира: новые аспекты). Интернет-ИСТОЧНИК1982г

Введение

Переход науки к постнеклассической стадии развития создал новые предпосылки формирования единой научной картины мира. Длительное время идея этого единства существовала как идеал. Но в последней трети XX века возникли реальные возможности объединения представлений о трех основных сферах бытия - неживой природе, органическом мире и социальной жизни - в целостную научную картину на основе базисных принципов, имеющих общенаучный статус.

Эти принципы, не отрицая специфики каждой конкретной отрасли знания, в то же время выступают в качестве инварианта в многообразии различных дисциплинарных онтологий. Формирование таких принципов было связано с переосмыслением оснований многих научных дисциплин. Одновременно они выступают как один из аспектов великой культурной трансформации, происходящей в нашу эпоху.

Если кратко охарактеризовать современные тенденции синтеза научных знаний, то они выражаются в стремлении построить общенаучную картину мира на основе принципов универсального эволюционизма, объединяющих в единое целое идеи системного и эволюционного подходов. Этой теме и посвящена моя работа.

Развитие химических знаний стимулируется необходимостью получения человеком различных веществ для своей жизнедеятельности. В наши дни химическая наука дает возможность получать вещества с заданными свойствами, находить способы управления этими свойствами, что является основной проблемой химии и системообразующим началом ее как науки.

Химия обычно рассматривается как наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения. Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д.

Термин «химия » происходит, по Плутарху, от одного из древних названий Египта, Хеми («черная земля»). Именно в Египте задолго до нашей эры достигли значительного развития металлургия, керамика, изготовление стекла, крашение, парфюмерия, косметика и др. Существует и иная точка зрения, связанная с греческим hymia - искусство литья (от hyma - литье).

На арабском Востоке появился термин «алхимия ». Целью алхимиков, главным образом, было создание «философского камня», способного все металлы превращать в золото. В основе этого лежал практический заказ: золото в Европе было необходимо для развития торговли, а известных месторождений было мало. Алхимики накопили огромный практический опыт превращения веществ, разработали соответствующий инструментарий, методику, химическую посуду и др.

Что касается химии , то, несмотря на многообразие эмпирического материала, в этой науке вплоть до открытия в 1869 г. периодической системы химических элементов Д.И.Менделеевым (1834 – 1907), по существу, не существовало объединяющей концепции , с помощью которой можно было бы объяснить весь накопленный фактический материал. Следовательно, невозможно было представить все наличное знание как систему теоретической химии.

Было бы, однако, неправильным не учитывать той громадной исследовательской работы, которая привела к утверждению системного взгляда на химические знания. Если обратиться к фундаментальным теоретическим обобщениям химии, то могут быть выделены четыре концептуальных уровня.

Уже с первых шагов химики на интуитивном и эмпирическом уровне поняли, что свойства простых веществ и химических соединений зависят от тех неизменных начал , которые впоследствии стали называть элементами . Выявление и анализ этих элементов, раскрытие связи между ними и свойствами веществ охватывает значительный период в истории химии. Этот первый концептуальный уровень можно назвать учением о составе веществ. На этом уровне проходило исследование различных свойств и превращений веществ в зависимости от их химического состава, определяемого их элементами. Очевидна поразительная аналогия с концепцией атомизма в физике. Химики, как и физики, искали ту первоначальную основу, с помощью которой пытались объяснить свойства всех простых и сложных веществ. Сформулирована эта концепция была довольно поздно – в 1860 году, на первом Международном съезде химиков в Карлсруэ в Германии. Ученые-химики исходили из того, что:

· все вещества состоят из молекул, которые находятся в непрерывном и самопроизвольном движении;

· все молекулы состоят из атомов;

· атомы и молекулы находятся в непрерывном движении;

Второй концептуальный уровень познания связан с исследованием структуры , то есть способа взаимодействия элементов в составе веществ и их соединений. Было установлено, что свойства веществ, полученных в результате химических реакций, зависят не только от элементов, но и от взаимосвязи и взаимодействия этих элементов в процессе реакции. Так, алмаз и уголь обладают различными свойствами именно вследствие различия структур, хотя их химический состав одинаков.

Третий концептуальный уровень познания представляет собой исследование внутренних механизмов и условий протекания химических процессов , таких, как температура, давление, скорость протекания реакций и некоторые другие. Все эти факторы оказывают громадное влияние на характер процессов и объем получаемых веществ, что имеет первостепенное значение для массового производства.

Четвертый концептуальный уровень – уровень эволюционной химии – является дальнейшим развитием предыдущего уровня, связанным с более глубоким изучением природы реагентов, участвующих в химических реакциях, а также применением катализаторов, значительно ускоряющих скорость их протекания. На этом уровне осмысливается процесс происхождения живой материи из материи косной.

2. Учение о составе вещества.


На этом уровне решались вопросы определения химического элемента, химического соединения и получения новых материалов на базе более широкого использования химических элементов.

Первое научное определение химического элемента, как «простого тела», сформулировал в XVII в. английский химик и физик Р. Бойль. Но в это время еще не было открыто ни одного из них. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие.

4. Эволюционная химия

3. Учение о химических процессах

2. Структурная химия

1. Учение о составе

1660-е гг.

1800-е гг.

1950-е гг.

1970-е гг.

Настоящее время

Рис. 1. Основные концепции химической науки.

Но еще и в XVIII веке железо, медь и другие, известные в то время металлы, ученые рассматривали как сложные тела, а окалину, получающуюся при их нагревании – за простое тело. Но окалина – это оксид металла, сложное тело.

Ошибочное представление, существовавшее в XVIII веке, было связано с ложной гипотезой флогистона немецкого врача и химика Георга Шталя (1660 – 1734). Он считал, что металлы состоят из окалины и флогистона (от греч. flogizein – зажигать, гореть), особого невесомого вещества, которое при нагревании улетучивается и остается чистый элемент. В состав пчелиного воска и угля, по его мнению, входит преимущественно флогистон, который при горении улетучивается и в результате остается лишь немного золы.

Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений о флогистоне. Лавуазье впервые систематизировал химические элементы на базе имевшихся в XVIII в. знаний. Постепенно химики открывали все новые и новые химические элементы, описывали их свойства и реакционную способность и благодаря этому накопили огромный эмпирический материал, который необходимо было привести в определенную систему . Такие системы предлагались разными учеными, но были весьма несовершенными потому, что в качестве системообразующего фактора брались несущественные, второстепенные и даже чисто внешние признаки элементов.

Великая заслуга Д. И. Менделеева состоит в том, что, открыв в 1869 г. периодический закон , он заложил фундамент для построения подлинно научной системы химических элементов. В качестве системообразующего фактора он выбрал атомный вес . В соответствии с атомным весом он расположил химические элементы в систему и показал, что их свойства находятся в периодической зависимости от величины атомного веса. До системного подхода Менделеева учебники по химии были очень громоздки. Так, учебник химии Л.Ж. Тенара состоял из 7 томов по 1000 – 1200 страниц каждый.

Периодический закон Д. И. Менделеева сформулирован в следующем виде: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Это обобщение давало новые представления об элементах, но в силу того, что еще не было известно строение атома, физический смысл его был недоступен . В современном представлении этот периодический закон выглядит следующим образом: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)». Например, элемент хлор имеет два изотопа , отличающиеся друг от друга по массе атома. Но оба они относятся к одному химическому элементу - хлору из-за одинакового заряда их ядер. Атомный же вес является средним арифметическим величин масс изотопов, из которых состоит элемент.

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном (Z = 92). В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Длительное время химикам казалось очевидным, что именно относится к химическим соединениям , а что - к простым телам или смесям. Однако применение в последнее время физических методов исследования вещества позволило выявить физическую природу химизма , т.е. те внутренние силы, которые объединяют атомы в молекулы, представляющие собой прочную квантово-механическую целостность. Такими силами оказались химические связи.

Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химические связи представляют собой обменное взаимодействие электронов с соответствующими характеристиками. Речь идет, прежде всего, об электронах, расположенных на внешней оболочке и связанных с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами выделяют типы связи.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.

Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов, например, NaCl.

Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Дальнейшее развитие науки позволило уточнить, что свойства химических элементов зависят от заряда ядра атомов, который определяется числом протонов или соответственно электронов. В настоящее время химическим элементом называют совокупность атомов с конкретным зарядом ядра Z, хотя и различающихся по своей массе, вследствие чего атомные веса элементов не всегда выражаются целыми числами.

Простое вещество – это форма существования химического элемента в свободном состоянии. Однако, к примеру, даже газообразный (не говоря уже о жидком и твердом агрегатном состоянии) водород существует в двух разновидностях, различающихся магнитной ориентацией ядер Н – ортоводород и параводород. Они различаются, к примеру, теплоемкостью. Существует также две разновидности газообразного и четыре – жидкого кислорода. Поэтому простых веществ насчитывается св. 500, в то время как химических элементов – чуть более ста.

С позиций атомизма решается также проблема химического соединения. Что считать смесью, а что химическим соединением? Обладает ли такое соединение постоянным или переменным составом?

Французский химик Жозеф Пруст (1754 – 1826) считал, что любое химическое соединение должно обладать вполне определенным, неизменным составом: «…природа дала химическому соединению постоянный состав и тем самым поставила его в совершенно особое положение по сравнению с раствором, сплавом и смесью» . При этом состав химического соединения не зависит от способа его получения.

Впоследствии закон постоянства состава с позиций атомно-молекулярного учения обосновал выдающийся английский химик Джон Дальтон (1766 – 1844). Он ввел в науку понятие «атомный вес» и утверждал, что всякое вещество, простое или сложное, состоит из мельчайших частиц – молекул, которые в свою очередь образованы из атомов. Именно молекулы являются наименьшими частицами, обладающими свойствами вещества.

Долгое время сформулированный Прустом закон постоянства химического состава считался абсолютной истиной, хотя другой французский химик Клод Бертолле (1748 – 18232) указывал на существование соединений переменного состава в форме растворов и сплавов. Впоследствии были найдены более убедительные доказательства существования химических соединений переменного состава в школе известного русского физикохимика Николая Семеновича Курнакова (1860 – 1940). В честь К. Бертолле он назвал их бертоллидами. К ним он отнес те соединения, состав которых зависит от способа их получения . Например, соединения таких двух металлов, как марганец и медь, магний и серебро и других характеризуются переменным составом, но они составляют единые химические соединения. Со временем химики открыли другие соединения такого же переменного состава и пришли к выводу, что они отличаются от соединений постоянного состава тем, что не обладают специфическим молекулярным строением.

Поскольку выяснилось, что природа соединения, то есть характер связи атомов в его молекуле зависит от их химических связей , то расширилось и представление о молекуле. Молекулой по-прежнему называют наименьшую частицу вещества, которая определяет его свойства и может существовать самостоятельно. Однако к молекулам теперь относят также разнообразные другие квантово-механические системы (ионные, атомные монокристаллы, полимеры, возникающие на основе водородных связей, и другие макромолекулы). В них химическая связь осуществляется не только путем взаимодействия внешних , валентных электронов, но и ионов, радикалов и других компонентов. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе.

Таким образом, ныне исчезает резкое прежнее противопоставление химических соединений постоянного состава, обладающих специфическим молекулярным строением, и соединений переменного состава, лишенных этой специфики. Теряет также силу отождествление химического соединения с молекулой, состоящей из нескольких разных атомов химических элементов. В принципе молекула соединения может состоять и из двух или нескольких атомов одного элемента: это молекулы Н 2 , О 2 , графит, алмаз и другие кристаллы.

Ныне имеются сведения о 8 млн. индивидуальных химических соединений постоянного и миллиардах – переменного состава.

В рамках учения о составе и строении элементов важное место занимает проблема производства новых материалов. Речь идет о включении в их состав новых химических элементов. Дело в том, что 98,7% массы слоя Земли, на котором осуществляет свою производственную деятельность человек, составляют восемь химических элементов: 47,0% - кислород, 27,5% - кремний, 8,8% - алюминий, 4,6% - железо, 3,6% - кальций, 2,6% - натрий, 2,5% - калий, 2,1% - магний. Однако эти химические элементы распределены на Земле неравномерно и также неравномерно используются. Более 95% изделий из металла в своей основе содержат железо. Такое потребление ведет к дефициту железа. Поэтому стоит задача использовать для человеческой деятельности и другие химические элементы, способные заменить железо, в частности, наиболее распространенный кремний. Силикаты, различные соединения кремния с кислородом и другими элементами составляют 97% массы земной коры.

На основе современных достижений химии появилась возможность замены металлов керамикой не только как более экономичным продуктом, но во многих случаях и как более подходящим конструкционным материалом по сравнению с металлом. Более низкая плотность керамики (40%) дает возможность снизить массу изготовляемых из нее предметов. Включение в производство керамики новых химических элементов: титана, бора, хрома, вольфрама и других позволяет получать материалы с заранее заданными специальными свойствами (огнеупорность, термостойкость, высокая твердость и т.д.).

Во второй половине XX в. стали использоваться все новые и новые химические элементы в синтезе элементоорганических соединений от алюминия до фтора. Часть таких соединений служит в качестве химических реагентов для лабораторных исследований, а другая - для синтеза новейших материалов.

Около 10 лет назад насчитывалось более 1 млн. разновидностей продукции, выпускаемой химической промышленность. Ныне в химических лабораториях нашей планеты ежедневно синтезируется 200 – 250 новых химических соединений.

3. Уровень структурной химии.

Структурная химия представляет собой уровень развития химических знаний, на котором доминирует понятие «структура», т.е. структура молекулы, макромолекулы, монокристалла.

С возникновением структурной химии у химической науки появились неизвестные ранее возможности целенаправленного качественного влияния на преобразование вещества. Известный немецкий химик Фридрих Кекуле (1829 – 1896) стал связывать структуру с понятием валентности элемента. Известно, что химические элементы обладают определенной валентностью (от лат. valentia – сила, способность) – способностью образовывать соединения с другими элементами. Валентность как раз и определяет, с каким числом атомов способен соединяться атом данного элемента. Еще в 1857 г. Ф.А. Кекуле показал, что углерод четырехвалентен, и это дает возможность присоединить к нему до четырех элементов одновалентного водорода. Азот может присоединить до трех одновалентных элементов, кислород - до двух.

Эта схема Кекуле натолкнула исследователей на понимание механизма получения новых химических соединений. А. М. Бутлеров заметил, что в таких соединениях большую роль играет энергия , с которой вещества связываются между собой . Эта трактовка Бутлерова подтвердилась исследованиям квантовой механики. Таким образом, исследование структуры молекулы неразрывно связано с квантово-механическими расчетами.

На основе представлений о валентности возникли те структурные формулы , которыми пользуются при изучении химии, особенно органической. Комбинируя атомы различных химических элементов по их валентности, можно прогнозировать получение различных химических соединений в зависимости от исходных реагентов. Таким путем можно было управлять процессом синтеза различных веществ с заданными свойствами, а именно это и составляет важнейшую задачу химической науки.

В 60 – 80-е гг. XIX века появился термин «органический синтез». Из аммиака и каменноугольной смолы были получены анилиновые красители - фуксин, анилиновая соль, ализарин, а позднее - взрывчатые вещества и лекарственные препараты - аспирин и др. Структурная химия дала повод для оптимистических заявлений, что химики могут все.

Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии . На уровне структурной химии не представлялось возможным указать эффективные пути получения этилена, ацетилена, бензола и других углеводородов из парафиновых углеводородов. Многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. А сам технологический процесс является многоэтапным и трудноуправляемым . Вследствие этого их нельзя было использовать в промышленном масштабе. Требовалось углубление знаний о химических процессах.

4. Учение о химических процессах.

Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить , хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема , поскольку они самопроизвольно создают массу побочных продуктов.

Все химические реакции имеют свойство обратимости , происходит перераспределение химических связей. Обратимость удерживает равновесие между прямой и обратной реакциями. В действительности равновесие зависит от условий прохождения процесса и чистоты реагентов. Смещение равновесия в ту или другую стороны требует специальных способов управления реакциями. Например, реакция получения аммиака: N 2 + 3H 2 ↔ 2NH 3

Эта реакция проста по составу элементов и своей структуре. Однако на протяжении целого столетия с 1813 по 1913 гг. химики не могли ее провести в законченном виде, так как не были известны средства управления ею. Она была осуществима только после открытия соответствующих законов нидерландским и французским физико-химиками Я.Х. Вант-Гофом и А.Д. Ле-Шателье . Было установлено, что синтез аммиака происходит на поверхности твердого катализатора (специально обработанного железа) при сдвиге равновесия за счет высоких давлений. Получение таких давлений сопряжено с большими технологическими трудностями. С открытием возможностей металлорганического катализатора синтез аммиака происходит при обычной температуре 180 о С и нормальном атмосферном давлении,

Проблемы управления скоростью химических процессов решает химическая кинетика. Она устанавливает зависимость химических реакций от различных факторов.

Термодинамическими факторами , которые оказывают существенное влияние на скорость химических реакций, являются температура и давление в реакторе. Например, смесь водорода и кислорода в условиях комнатной температуры и нормального давления можно хранить годами , и никакой реакции при этом не произойдет. Но стоит пропустить через смесь электрическую искру , как произойдет взрыв .

Скорость реакции в существенной степени зависит от температуры . Каждый знает, что сахар скорее растворяется в горячем чае, чем в холодной воде. Так, для большинства химических реакций скорость протекания при повышении температуры на 100 о С возрастает приблизительно в два раза.

Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Именно на них и направлено в первую очередь действие разных катализаторов , которые значительно ускоряют ход химических реакций.

5. Эволюционная химия

Химики давно пытались понять, какая лаборатория лежит в основе процесса возникновения жизни из неорганической безжизненной материи - лаборатория, в которой без участия человека получаются новые химические соединения» более сложные, чем исходные вещества?

И. Я. Берцелиус (1779-1848)первым установил, что основой живого является биокатализ , т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой. Возникновение и эволюция жизни на Земле была бы невозможна без существования ферментов , служащих по сути дела живыми катализаторами.

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничения .

Тем не менее, современные химики считают, что на основе изучения химии организмов можно будет создать новое управление химическими процессами. Для решения проблемы биокатализа и использования его результатов в промышленных масштабах химическая наука разработала ряд методов:

· изучение и использование приемов живой природы,

· применения отдельных ферментов для моделирования биокатализаторов,

· освоение механизмов живой природы,

· развитие исследований с целью применения принципов биокатализа в химических процессах и химической технологии.

В эволюционной химии существенное место отводится проблеме самоорганизации систем. В процессе самоорганизации предбиологических систем шел отбор необходимых элементов для появления жизни и ее функционирования. Из более чем ста химических элементов, открытых к настоящему времени, многие принимают участие в жизнедеятельности живых организмов. Наука же считает, что только шесть элементов - углерод, водород, кислород, азот, фосфор и сера составляют основу живых систем, из-за чего они получили название органогенов . Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов; натрий, калий, кальций, магний», железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор.

Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.

Из такого количества органических соединений в строительстве биомира задействованы природой всего несколько сотен. Из 100 известных аминокислот в состав белков входит только 20; лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.

Каким образом природа из такого ограниченного количества химических элементов и химических соединений образовала сложнейший высокоорганизованный комплекс - биосистему ?

Этот процесс ныне представляется следующим образом.

1. На ранних стадиях химической эволюции мира катализ отсутствовал . Условия высоких температур - выше 5 тыс. градусов по Кельвину, электрических разрядов и радиации препятствуют образованию конденсированного состояния.

2. Проявления катализа начинаются при смягчении условий ниже 5 тыс. град, по Кельвину и образования первичных тел.

3. Роль катализатора возрастала (но пока еще незначительно), по мере того, как физические условия (главным образом температура) приближались к современным земным. Появление таких, даже относительно несложных систем, как: СН 3 ОН, СН 2 = СН 2 ; НС ≡ СН, Н 2 СО, НСООН, НС ≡ N, а тем более аминокислот, первичных сахаров, было своеобразной некаталитической подготовкой старта для большого катализа.

4. Роль катализа в развитии химических систем после достижения стартового состояния, т.е. известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой . Отбор активных соединений происходил в природе из тех продуктов, которые получились относительно большим числом химических путей и обладали широким каталитическим спектром.

В 1969 г. появилась общая теория химической эволюции и биогенеза , выдвинутая ранее в самых общих положениях профессором Московского университета А.П. Руденко. Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы . Открытый А.П. Руденко основной закон химической эволюции гласит, что эволюционные изменения катализатора происходят в том направлении, где проявляется его максимальная активность. Теория саморазвития каталитических систем позволяет выявлять этапы химической эволюции; дать конкретную характеристику пределов в химической эволюции и перехода от химогенеза (химического становления) к биогенезу.

Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы. А Земля оказалась в таких специфических условиях, что эти предпосылки смогли реализоваться. Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет. Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека. Видимо, одним из проявлений природы и является появление человека как самосознающей себя материи. На определенном этапе он может оказывать ощутимое воздействие на среду собственного обитания, причем как позитивное, так и негативное.

В последующих лекциях мы будем более подробно говорить о сущности жизни.

Вопросы для повторения

1. Что изучает химия, и какие основные методы она использует?

2. Какая связь существует между атомным весом и зарядом ядра атома?

3. Что называют химическим элементом?

4. Что называется простым и сложным веществом?

5. От каких факторов зависят свойства веществ?

6. Кто стал основоположником системного подхода в развитии химических знаний? Какую систему он построил?

7. Какой вклад в развитие химических знаний внесли физики?

8. Что такое катализаторы?

9. Какие элементы называют органогенами?

10. Для чего химики изучают лабораторию «живой природы»?

11. Чем отличаются ферменты от химических катализаторов?

12. Каковы потенциальные возможности эволюционной химии?

Литература

Основная:

1. Рузавин Г.И. Концепции современного естествознания: Курс лекций. – М.: Гардарики, 2006. Гл. 11.

2. Концепции современного естествознания / Под ред. В.Н. Лавриненко и В.П. Ратникова. – М.: ЮНИТИ-ДАНА.2003. – Гл. 5.

3. Карпенков С.Х. Основные концепции естествознания. – М.: Академический Проект, 2002. Гл. 4.

Дополнительная:

1. Азимов А. Краткая история химии: Развитие идей и представлений химии от алхимии до ядерной бомбы. – СПб.: Амфора, 2002.

2. Некрасов Б.В. Основы общей химии. Изд. 4-е. В 2 т. – СПб., М., Краснодар: Лань, 2003.

3. Пиментел Д., Курод Д. Возможности химии сегодня и завтра. М., 1992.

4. Фримантл М. Химия в действии: В 2 ч. – М.: Мир, 1998.

5. Эмсли Дж. Элементы. - М.: Мир, 1993.

6. Энциклопедия для детей. Том 17. Химия / Глав. Ред. В.А. Володин. – М.: Аванта+, 2000.

Изотопами называются разновидности атомов, которые имеют одинаковый заряд ядра, но отличаются по своей массе.

Цит. по: Колтун Марк. Мир химии. – М.: Дет. лит., 1988. С.48.